Gualandi C et al. (JUN 2016)
Macromolecular Bioscience
Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing
Electrospun poly-l-lactic acid (PLLA) nanofiber mats carrying surface amine groups,previously introduced by nitrogen atmospheric pressure nonequilibrium plasma,are embedded into aqueous solutions of oligomeric acrylamide-end capped AGMA1,a biocompatible polyamidoamine with arg-gly-asp (RGD)-reminiscent repeating units. The resultant mixture is finally cured giving PLLA-AGMA1 hydrogel composites that absorb large amounts of water and,in the swollen state,are translucent,soft,and pliable,yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant,since the hydrogel portion is covalently grafted onto the PLLA nanofibers via the addition reaction of the surface amine groups to a part of the terminal acrylic double bonds of AGMA1 oligomers. Preliminary tested as scaffolds,the composites prove capable of maintaining short-term undifferentiated cultures of human pluripotent stem cells in feeder-free conditions.
View Publication
Reference
Hyslop LA et al. (JUN 2016)
Nature 534 7607 383--386
Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease.
Mitochondrial DNA (mtDNA) mutations are maternally inherited and are associated with a broad range of debilitating and fatal diseases. Reproductive technologies designed to uncouple the inheritance of mtDNA from nuclear DNA may enable affected women to have a genetically related child with a greatly reduced risk of mtDNA disease. Here we report the first preclinical studies on pronuclear transplantation (PNT). Surprisingly,techniques used in proof-of-concept studies involving abnormally fertilized human zygotes were not well tolerated by normally fertilized zygotes. We have therefore developed an alternative approach based on transplanting pronuclei shortly after completion of meiosis rather than shortly before the first mitotic division. This promotes efficient development to the blastocyst stage with no detectable effect on aneuploidy or gene expression. After optimization,mtDNA carryover was reduced to textless2% in the majority (79%) of PNT blastocysts. The importance of reducing carryover to the lowest possible levels is highlighted by a progressive increase in heteroplasmy in a stem cell line derived from a PNT blastocyst with 4% mtDNA carryover. We conclude that PNT has the potential to reduce the risk of mtDNA disease,but it may not guarantee prevention.
View Publication
Reference
Lin L et al. (JUN 2016)
Cell Reports 15 11 2411--2426
Molecular Features Underlying Neurodegeneration Identified through In Vitro Modeling of Genetically Diverse Parkinson's Disease Patients
The fact that Parkinson's disease (PD) can arise from numerous genetic mutations suggests a unifying molecular pathology underlying the various genetic backgrounds. To address this hypothesis,we took an integrated approach utilizing in vitro disease modeling and comprehensive transcriptome profiling to advance our understanding of PD progression and the concordant downstream signaling pathways across divergent genetic predispositions. To model PD in vitro,we generated neurons harboring disease-causing mutations from patient-specific,induced pluripotent stem cells (iPSCs). We observed signs of degeneration in midbrain dopaminergic neurons,reflecting the cardinal feature of PD. Gene expression signatures of PD neurons provided molecular insights into disease phenotypes observed in vitro,including oxidative stress vulnerability and altered neuronal activity. Notably,PD neurons show that elevated RBFOX1,a gene previously linked to neurodevelopmental diseases,underlies a pattern of alternative RNA-processing associated with PD-specific phenotypes.
View Publication
Reference
Kim B-Y et al. ( 2016)
Experimental & molecular medicine 48 6 e237
Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC.
Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1,encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it,we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However,the mALK2 leads to inhibitory pluripotency maintenance,or impaired clonogenic potential after single-cell dissociation as an inevitable step,which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus,current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome,and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors,CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617GtextgreaterA. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern,as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time,labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies,which is hampered by inhibitory pluripotency-maintenance requirements,or vulnerability of single-cell-dissociated iPSCs.
View Publication
Reference
Bahl V et al. (JUN 2016)
Toxicological sciences : an official journal of the Society of Toxicology 153 1 kfw102
From the Cover: Thirdhand Cigarette Smoke Causes Stress-Induced Mitochondrial Hyperfusion and Alters the Transcriptional Profile of Stem Cells.
Thirdhand cigarette smoke (THS) was recently recognized as an environmental health hazard; however,little is known about it effects on cells. Mitochondria are sensitive monitors of cell health and report on environmentally-induced stress. We tested the effects of low levels of THS extracted from terry cloth on mitochondrial morphology and function using stem cells with well-defined mitochondria. Concentrations of THS that did not kill cells caused stress-induced mitochondrial hyperfusion (SIMH),which was characterized by changes in mitochondrial morphology indicative of fusion,increased mitochondrial membrane potential (MMP),increased ATP levels,increased superoxide production,and increased oxidation of mitochondrial proteins. SIMH was accompanied by a decrease in Fis1 expression,a gene responsible for mitochondrial fission,and a decrease in apoptosis-related genes,including Aifm2,Bbc3 and Bid There was also down regulation of Ucp2,Ucp4 and Ucp5,genes that decrease MMP thereby reducing oxidative phosphorylation,while promoting glycolysis. These effects,which collectively accompany SIMH,are a pro-survival mechanism to rescue damaged mitochondria and protect cells from apoptosis. Prolonged exposure to THS caused a reduction in MMP and decreased cell proliferation,which likely leads to apoptosis.
View Publication
Reference
Pfaender S et al. ( 2016)
Neural plasticity 2016 ID 3760702 1--15
Cellular Zinc Homeostasis Contributes to Neuronal Differentiation in Human Induced Pluripotent Stem Cells.
Disturbances in neuronal differentiation and function are an underlying factor of many brain disorders. Zinc homeostasis and signaling are important mediators for a normal brain development and function,given that zinc deficiency was shown to result in cognitive and emotional deficits in animal models that might be associated with neurodevelopmental disorders. One underlying mechanism of the observed detrimental effects of zinc deficiency on the brain might be impaired proliferation and differentiation of stem cells participating in neurogenesis. Thus,to examine the molecular mechanisms regulating zinc metabolism and signaling in differentiating neurons,using a protocol for motor neuron differentiation,we characterized the expression of zinc homeostasis genes during neurogenesis using human induced pluripotent stem cells (hiPSCs) and evaluated the influence of altered zinc levels on the expression of zinc homeostasis genes,cell survival,cell fate,and neuronal function. Our results show that zinc transporters are highly regulated genes during neuronal differentiation and that low zinc levels are associated with decreased cell survival,altered neuronal differentiation,and,in particular,synaptic function. We conclude that zinc deficiency in a critical time window during brain development might influence brain function by modulating neuronal differentiation.
View Publication
Reference
Kallas-Kivi A et al. ( 2016)
Stem Cells International 2016 1--16
Lovastatin Decreases the Expression of CD133 and Influences the Differentiation Potential of Human Embryonic Stem Cells
The lipophilic statin lovastatin decreases cholesterol synthesis and is a safe and effective treatment for the prevention of cardiovascular diseases. Growing evidence points at antitumor potential of lovastatin. Therefore,understanding the molecular mechanism of lovastatin function in different cell types is critical to effective therapy design. In this study,we investigated the effects of lovastatin on the differentiation potential of human embryonic stem (hES) cells (H9 cell line). Multiparameter flow cytometric assay was used to detect changes in the expression of transcription factors characteristic of hES cells. We found that lovastatin treatment delayed NANOG downregulation during ectodermal and endodermal differentiation. Likewise,expression of ectodermal (SOX1 and OTX2) and endodermal (GATA4 and FOXA2) markers was higher in treated cells. Exposure of hES cells to lovastatin led to a minor decrease in the expression of SSEA-3 and a significant reduction in CD133 expression. Treated cells also formed fewer embryoid bodies than control cells. By analyzing hES with and without CD133,we discovered that CD133 expression is required for proper formation of embryoid bodies. In conclusion,lovastatin reduced the heterogeneity of hES cells and impaired their differentiation potential.
View Publication
Reference
van de Bunt M et al. (APR 2016)
Islets 8 3 83--95
Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model.
Directed differentiation of stem cells offers a scalable solution to the need for human cell models recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors,and characterized the distinct transcriptomic profiles associated with each stage. Established regulators of endodermal lineage commitment,such as SOX17 (log2 fold change [FC] compared to iPSCs = 14.2,p-value = 4.9 × 10(-5)) and the pancreatic agenesis gene GATA6 (log2 FC = 12.1,p-value = 8.6 × 10(-5)),showed transcriptional variation consistent with their known developmental roles. However,these analyses highlighted many other genes with stage-specific expression patterns,some of which may be novel drivers or markers of islet development. For example,the leptin receptor gene,LEPR,was most highly expressed in published data from in vivo-matured cells compared to our endocrine pancreas-like cells (log2 FC = 5.5,p-value = 2.0 × 10(-12)),suggesting a role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed significant stage-selective expression of adult islet genes,including INS,ABCC8,and GLP1R,and enrichment of relevant GO-terms (e.g. insulin secretion"; odds ratio = 4.2�
View Publication
Reference
Cavero I et al. (MAY 2016)
Journal of pharmacological and toxicological methods
Comprehensive in vitro Proarrhythmia Assay (CiPA): Pending issues for successful validation and implementation.
INTRODUCTION The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a nonclinical Safety Pharmacology paradigm for discovering electrophysiological mechanisms that are likely to confer proarrhythmic liability to drug candidates intended for human use. TOPICS COVERED Key talks delivered at the 'CiPA on my mind' session,held during the 2015 Annual Meeting of the Safety Pharmacology Society (SPS),are summarized. Issues and potential solutions relating to crucial constituents [e.g.,biological materials (ion channels and pluripotent stem cell-derived cardiomyocytes),study platforms,drug solutions,and data analysis] of CiPA core assays are critically examined. DISCUSSION In order to advance the CiPA paradigm from the current testing and validation stages to a research and regulatory drug development strategy,systematic guidance by CiPA stakeholders is necessary to expedite solutions to pending and newly arising issues. Once a study protocol is proved to yield robust and reproducible results within and across laboratories,it can be implemented as qualified regulatory procedure.
View Publication
Reference
Thomas BB et al. (MAY 2016)
Investigative Ophthalmology and Visual Science 57 6 2877--2887
Survival and functionality of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats
PURPOSE To determine the safety,survival,and functionality of human embryonic stem cell-derived RPE (hESC-RPE) cells seeded on a polymeric substrate (rCPCB-RPE1 implant) and implanted into the subretinal (SR) space of Royal College of Surgeons (RCS) rats. METHODS Monolayers of hESC-RPE cells cultured on parylene membrane were transplanted into the SR space of 4-week-old RCS rats. Group 1 (n = 46) received vitronectin-coated parylene membrane without cells (rMSPM+VN),group 2 (n = 59) received rCPCB-RPE1 implants,and group 3 (n = 13) served as the control group. Animals that are selected based on optical coherence tomography screening were subjected to visual function assays using optokinetic (OKN) testing and superior colliculus (SC) electrophysiology. At approximately 25 weeks of age (21 weeks after surgery),the eyes were examined histologically for cell survival,phagocytosis,and local toxicity. RESULTS Eighty-seven percent of the rCPCB-RPE1-implanted animals showed hESC-RPE survivability. Significant numbers of outer nuclear layer cells were rescued in both group 1 (rMSPM+VN) and group 2 (rCPCB-RPE1) animals. A significantly higher ratio of rod photoreceptor cells to cone photoreceptor cells was found in the rCPCB-RPE1-implanted group. Animals with rCPCB-RPE1 implant showed hESC-RPE cells containing rhodopsin-positive particles in immunohistochemistry,suggesting phagocytic function. Superior colliculus mapping data demonstrated that a significantly higher number of SC sites responded to light stimulus at a lower luminance threshold level in the rCPCB-RPE1-implanted group. Optokinetic data suggested both implantation groups showed improved visual acuity. CONCLUSIONS These results demonstrate the safety,survival,and functionality of the hESC-RPE monolayer transplantation in an RPE dysfunction rat model.
View Publication
Reference
Brosh R et al. ( 2016)
Nature communications 7 May 11742
A dual molecular analogue tuner for dissecting protein function in mammalian cells.
Loss-of-function studies are fundamental for dissecting gene function. Yet,methods to rapidly and effectively perturb genes in mammalian cells,and particularly in stem cells,are scarce. Here we present a system for simultaneous conditional regulation of two different proteins in the same mammalian cell. This system harnesses the plant auxin and jasmonate hormone-induced degradation pathways,and is deliverable with only two lentiviral vectors. It combines RNAi-mediated silencing of two endogenous proteins with the expression of two exogenous proteins whose degradation is induced by external ligands in a rapid,reversible,titratable and independent manner. By engineering molecular tuners for NANOG,CHK1,p53 and NOTCH1 in mammalian stem cells,we have validated the applicability of the system and demonstrated its potential to unravel complex biological processes.
View Publication
Reference
Kouroupis D et al. (SEP 2016)
Stem cell research 17 2 448--457
Generation of stem cell-based bioartificial anterior cruciate ligament (ACL) grafts for effective ACL rupture repair.
In the present study,we combined stem cell technology with a non-absorbable biomaterial for the reconstruction of the ruptured ACL. Towards this purpose,multipotential stromal cells derived either from subcutaneous human adipose tissue (hAT-MSCs) or from induced pluripotent stem cells (iPSCs) generated from human foreskin fibroblasts (hiPSC-MSCs) were cultured on the biomaterial for 21days in vitro to generate a 3D bioartifical ACL graft. Stem cell differentiation towards bone and ligament at the ends and central part of the biomaterial was selectively induced using either BMP-2/FGF-2 or TGF-β/FGF-2 combinations,respectively. The bioartificial ACL graft was subsequently implanted in a swine ACL rupture model in place of the surgically removed normal ACL. Four months post-implantation,the tissue engineered ACL graft generated an ACL-like tissue exhibiting morphological and biochemical characteristics resembling those of normal ACL.
View Publication