Crook JM et al. (MAR 2015)
Expert review of neurotherapeutics 15 3 295--304
The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy.
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods,enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment,such as schizophrenia,epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders,canvassing proven and putative advantages,current constraints,and future prospects of next-generation culture systems for biomedical research and translation.
View Publication
Reference
Czysz K et al. (FEB 2015)
PLoS ONE 10 2 e0117689
Dmso efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation
BACKGROUND Definitive endoderm (DE) is one of the three germ layers which during in vivo vertebrate development gives rise to a variety of organs including liver,lungs,thyroid and pancreas; consequently efficient in vitro initiation of stem cell differentiation to DE cells is a prerequisite for successful cellular specification to subsequent DE-derived cell types [1,2]. In this study we present a novel approach to rapidly and efficiently down regulate pluripotency genes during initiation of differentiation to DE cells by addition of dimethyl sulfoxide (DMSO) to Activin A-based culture medium and report its effects on the downstream differentiation to hepatocyte-like cells. MATERIALS AND METHODS Human embryonic stem cells (hESC) were differentiated to DE using standard methods in medium supplemented with 100ng/ml of Activin A and compared to cultures where DE specification was additionally enhanced with different concentrations of DMSO. DE cells were subsequently primed to generate hepatic-like cells to investigate whether the addition of DMSO during formation of DE improved subsequent expression of hepatic markers. A combination of flow cytometry,real-time quantitative reverse PCR and immunofluorescence was applied throughout the differentiation process to monitor expression of pluripotency (POUF5/OCT4 & NANOG),definitive endoderm (SOX17,CXCR4 & GATA4) and hepatic (AFP & ALB) genes to generate differentiation stage-specific signatures. RESULTS Addition of DMSO to the Activin A-based medium during DE specification resulted in rapid down regulation of the pluripotency genes OCT4 and NANOG,accompanied by an increase expression of the DE genes SOX17,CXCR4 and GATA4. Importantly,the expression level of ALB in DMSO-treated cells was also higher than in cells which were differentiated to the DE stage via standard Activin A treatment.
View Publication
Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells.
About half of the human genome consists of highly repetitive elements,most of which are considered dispensable for human life. Here,we report that repetitive elements originating from endogenous retroviruses (ERVs) are systematically transcribed during human early embryogenesis in a stage-specific manner. Our analysis highlights that the long terminal repeats (LTRs) of ERVs provide the template for stage-specific transcription initiation,thereby generating hundreds of co-expressed,ERV-derived RNAs. Conversion of human embryonic stem cells (hESCs) to an epiblast-like state activates blastocyst-specific ERV elements,indicating that their activity dynamically reacts to changes in regulatory networks. In addition to initiating stage-specific transcription,many ERV families contain preserved splice sites that join the ERV segment with non-ERV exons in their genomic vicinity. In summary,we find that ERV expression is a hallmark of cellular identity and cell potency that characterizes the cell populations in early human embryos.
View Publication
Reference
Wong AP et al. (MAR 2015)
Nature protocols 10 3 363--81
Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells.
Airway epithelial cells are of great interest for research on lung development,regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation,and full maturation of the cells in air-liquid interface cultures occurs in textless5 weeks. This protocol can be used for drug discovery,tissue regeneration or disease modeling.
View Publication
Reference
Lei IL et al. (JAN 2015)
Journal of visualized experiments : JoVE January 52047. doi: 10.3791/52047.
Derivation of cardiac progenitor cells from embryonic stem cells.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes,smooth muscle cells (SMC),and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs,differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result,numerous strategies have been developed to derive CPCs from ESCs. In this protocol,differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs,ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus,CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.
View Publication
Reference
McGrath PS et al. (JUL 2015)
Diabetes 64 7 2497--2505
The basic helix-loop-helix transcription factor neurog3 is required for development of the human endocrine pancreas
Neurogenin3 (NEUROG3) is a basic helix-loop-helix transcription factor required for development of the endocrine pancreas in mice. In contrast,humans with NEUROG3 mutations are born with endocrine pancreas function,calling into question whether NEUROG3 is required for human endocrine pancreas development. To test this directly,we generated human embryonic stem cell (hESC) lines where both alleles of NEUROG3 were disrupted using CRISPR/Cas9-mediated gene targeting. NEUROG3(-/-) hESC lines efficiently formed pancreatic progenitors but lacked detectible NEUROG3 protein and did not form endocrine cells in vitro. Moreover,NEUROG3(-/-) hESC lines were unable to form mature pancreatic endocrine cells after engraftment of PDX1(+)/NKX6.1(+) pancreatic progenitors into mice. In contrast,a 75-90% knockdown of NEUROG3 caused a reduction,but not a loss,of pancreatic endocrine cell development. We conclude that NEUROG3 is essential for endocrine pancreas development in humans and that as little as 10% NEUROG3 is sufficient for formation of pancreatic endocrine cells.
View Publication
Reference
Rao RA et al. (FEB 2015)
Scientific reports 5 8229
Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming.
Factor induced reprogramming of fibroblasts is an orchestrated but inefficient process. At the epigenetic level,it results in drastic chromatin changes to erase the existing somatic memory" and to establish the pluripotent state. Accordingly�
View Publication
Reference
Zhang X et al. ( 2016)
1353 323--342
Mitochondrial Disease-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization.
Mitochondrial disease is a group of disorders caused by dysfunctional mitochondria,of which the mutation in the mitochondrial DNA is one of the primary factors. However,the molecular pathogenesis of mitochondrial diseases remains poorly understood due to lack of cell models. Patient-specific induced pluripotent stem cells (iPS cells or iPSCs) are originated from individuals suffering different diseases but carrying unchanged disease causing gene. Therefore,patient-specific iPS cells can be used as excellent cell models to elucidate the mechanisms underlying mitochondrial diseases. Here we present a detailed protocol for generating iPS cells from urine cells and fibroblasts for instance,as well as a series of characterizations.
View Publication
Reference
Leung A and Murphy GJ (JAN 2016)
Methods in molecular biology (Clifton,N.J.) 1353 261--270
Multisystemic Disease Modeling of Liver-Derived Protein Folding Disorders Using Induced Pluripotent Stem Cells (iPSCs).
Familial transthyretin amyloidosis (ATTR) is an autosomal dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR,protein secreted from the liver aggregates and forms fibrils in target organs,chiefly the heart and peripheral nervous system,highlighting the need for a model capable of recapitulating the multisystem complexity of this clinically variable disease. Here,we describe detailed methodologies for the directed differentiation of protein folding disease-specific iPSCs into hepatocytes that produce mutant protein,and neural-lineage cells often targeted in disease. Methodologies are also described for the construction of multisystem models and drug screening using iPSCs.
View Publication
Reference
Orellana MD et al. (AUG 2015)
Cryobiology 71 1 151--160
Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement
BACKGROUND The therapeutic use of human embryonic stem cells (hESCs) is dependent on an efficient cryopreservation protocol for long-term storage. The aim of this study was to determine whether the combination of three cryoprotecting reagents using two freezing systems might improve hESC recovery rates with maintenance of hESC pluripotency properties for potential cell therapy application. METHODS Recovery rates of hESC colonies which were frozen in three cryoprotective solutions: Me2SO/HES/SR medium,Defined-medium® and Me2SO/SFB in medium solution were evaluated in ultra-slow programmable freezing system (USPF) and a slow-rate freezing system (SRF). The hESC pluripotency properties after freezing-thawing were evaluated. RESULTS We estimated the distribution frequency of survival colonies and observed that independent of the freezing system used (USPF or SRF) the best results were obtained with Me2SO/HES/SR as cryopreservation medium. We showed a significant hESC recovery colonies rate after thawing in Me2SO/HES/SR medium were 3.88 and 2.9 in USPF and SRF,respectively. The recovery colonies rate with Defined-medium® were 1.05 and 1.07 however in classical Me2SO medium were 0.5 and 0.86 in USPF and SRF,respectively. We showed significant difference between Me2SO/HES/SR medium×Defined-medium® and between Me2SO/HES/SR medium×Me2SO medium,for two cryopreservation systems (Ptextless0.05). CONCLUSION We developed an in house protocol using the combination of Me2SO/HES/SR medium and ultra-slow programmable freezing system which resulted in hESC colonies that remain undifferentiated,maintain their in vitro and in vivo pluripotency properties and genetic stability. This approach may be suitable for cell therapy studies.
View Publication
Reference
Lee J-HJBJH et al. (APR 2015)
Stem Cells 33 4 1142--1152
Reversible lineage-specific priming of human embryonic stem cells can be exploited to optimize the yield of differentiated cells.
The clinical use of human embryonic stem cells (hESCs) requires efficient cellular expansion that must be paired with an ability to generate specialized progeny through differentiation. Self-renewal and differentiation are deemed inherent hallmarks of hESCs and a growing body of evidence suggests that initial culture conditions dictate these two aspects of hESC behavior. Here,we reveal that defined culture conditions using commercial mTeSR1 media augment the expansion of hESCs and enhance their capacity for neural differentiation at the expense of hematopoietic lineage competency without affecting pluripotency. This culture-induced modification was shown to be reversible,as culture in mouse embryonic fibroblast-conditioned media (MEF-CM) in subsequent passages allowed mTeSR1-expanded hESCs to re-establish hematopoietic differentiation potential. Optimal yield of hematopoietic cells can be achieved by expansion in mTeSR1 followed by a recovery period in MEF-CM. Furthermore,the lineage propensity to hematopoietic and neural cell types could be predicted via analysis of surrogate markers expressed by hESCs cultured in mTeSR1 versus MEF-CM,thereby circumventing laborious in vitro differentiation assays. Our study reveals that hESCs exist in a range of functional states and balance expansion with differentiation potential,which can be modulated by culture conditions in a predictive and quantitative manner. Stem Cells 2015;33:1142-1152.
View Publication
Reference
Kerscher P et al. ( 2015)
Methods in molecular biology (Clifton,N.J.) 1264 453--463
Characterization of Mitochondrial Populations During Stem Cell Differentiation
Mitochondrial dynamics play an important role in numerous physiological and pathophysiological phenomena in the developing and adult human heart. Alterations in structural aspects of cellular mitochondrial composition as a function of changes in physiology can easily be visualized using fluorescence microscopy. Commonly,mitochondrial location,number,and morphology are reported qualitatively due to the lack of automated and user-friendly computer-based analysis tools. Mitochondrial Quantification using MATLAB (MQM) is a computer-based tool to quantitatively assess these parameters by analyzing fluorescently labeled mitochondria within the cell; in particular,MQM provides numerical information on the number,area,and location of mitochondria within a cell in a time-efficient,automated,and unbiased way. This chapter describes the use of MQM's capabilities to quantify mitochondrial changes during human pluripotent stem cell (hPSC) differentiation into spontaneously contracting cardiomyocytes (SC-CMs),which follows physiological pathways of human heart development.
View Publication