Gilpin SE et al. (NOV 2014)
The Annals of thoracic surgery 98 5 1721--------9; discussion 1729
Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix.
BACKGROUND Whole-lung scaffolds can be created by perfusion decellularization of cadaveric donor lungs. The resulting matrices can then be recellularized to regenerate functional organs. This study evaluated the capacity of acellular lung scaffolds to support recellularization with lung progenitors derived from human induced pluripotent stem cells (iPSCs). METHODS Whole rat and human lungs were decellularized by constant-pressure perfusion with 0.1% sodium dodecyl sulfate solution. Resulting lung scaffolds were cryosectioned into slices or left intact. Human iPSCs were differentiated to definitive endoderm,anteriorized to a foregut fate,and then ventralized to a population expressing NK2 homeobox 1 (Nkx2.1). Cells were seeded onto slices and whole lungs,which were maintained under constant perfusion biomimetic culture. Lineage specification was assessed by quantitative polymerase chain reaction and immunofluorescent staining. Regenerated left lungs were transplanted in an orthotopic position. RESULTS Activin-A treatment,followed by transforming growth factor-$\$,induced differentiation of human iPSCs to anterior foregut endoderm as confirmed by forkhead box protein A2 (FOXA2),SRY (Sex Determining Region Y)-Box 17 (SOX17),and SOX2 expression. Cells cultured on decellularized lung slices demonstrated proliferation and lineage commitment after 5 days. Cells expressing Nkx2.1 were identified at 40% to 60% efficiency. Within whole-lung scaffolds and under perfusion culture,cells further upregulated Nkx2.1 expression. After orthotopic transplantation,grafts were perfused and ventilated by host vasculature and airways. CONCLUSIONS Decellularized lung matrix supports the culture and lineage commitment of human iPSC-derived lung progenitor cells. Whole-organ scaffolds and biomimetic culture enable coseeding of iPSC-derived endothelial and epithelial progenitors and enhance early lung fate. Orthotopic transplantation may enable further in vivo graft maturation.
View Publication
Reference
Liu W et al. (DEC 2014)
Cell death and differentiation 4 12 1950--1960
BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos.
Bromodomain-containing protein 4 (BRD4) is an important epigenetic reader implicated in the pathogenesis of a number of different cancers and other diseases. Brd4-null mouse embryos die shortly after implantation and are compromised in their ability to maintain the inner cell mass,which gives rise to embryonic stem cells (ESCs). Here we report that BRD4 regulates expression of the pluripotency factor Nanog in mouse ESCs and preimplantation embryos,as well as in human ESCs and embryonic cancer stem cells. Inhibition of BRD4 function using a chemical inhibitor,small interfering RNAs,or a dominant-negative approach suppresses Nanog expression,and abolishes the self-renewal ability of ESCs. We also find that BRD4 associates with BRG1 (brahma-related gene 1,aka Smarca4 (SWI/SNF-related,matrix-associated,actin-dependent regulator of chromatin,subfamily a,member 4)),a key regulator of ESC self-renewal and pluripotency,in the Nanog regulatory regions to regulate Nanog expression. Our study identifies Nanog as a novel BRD4 target gene,providing new insights for the biological function of BRD4 in stem cells and mouse embryos. Knowledge gained from these non-cancerous systems will facilitate future investigations of how Brd4 dysfunction leads to cancers.Cell Death and Differentiation advance online publication,22 August 2014; doi:10.1038/cdd.2014.124.
View Publication
Reference
Utami KH et al. (NOV 2014)
Human mutation 35 11 1311--1320
Impaired development of neural-crest cell-derived organs and intellectual disability caused by MED13L haploinsufficiency.
MED13L is a component subunit of the Mediator complex,an important regulator of transcription that is highly conserved across eukaryotes. Here we report MED13L disruption in a translocation t(12;19) breakpoint of a patient with Pierre-Robin syndrome,moderate intellectual disability (ID),craniofacial anomalies,and muscular defects. The phenotype is similar to previously described patients with MED13L haploinsufficiency. Knockdown of MED13L orthologue in zebrafish,med13b,showed early defective migration of cranial neural crest cells (NCCs) that contributed into cartilage structure deformities in the later stage,recapitulating craniofacial anomalies seen in human patients. Notably,we observed abnormal distribution of developing neurons in different brain regions of med13b morphant embryos,which could be rescued upon introduction of full-length human MED13L mRNA. To compare with mammalian system,we suppressed MED13L expression by short-hairpin RNA in ES-derived human neural progenitors,and differentiated them into neurons. Transcriptome analysis revealed differential expression of components of Wnt and FGF signalling pathways in MED13L-deficient neurons. Our finding provides a novel insight into the mechanism of overlapping phenotypic outcome targeting NCCs derivatives organs in patients with MED13L haploinsufficiency,and emphasizes a clinically recognizable syndromic phenotype in these patients. This article is protected by copyright. All rights reserved.
View Publication
Reference
Diekmann U et al. (JAN 2015)
Stem cells and development 24 2 190--204
A reliable and efficient protocol for human pluripotent stem cell differentiation into the definitive endoderm based on dispersed single cells.
Differentiation of pluripotent cells into endoderm-related cell types initially requires in vitro gastrulation into the definitive endoderm (DE). Most differentiation protocols are initiated from colonies of pluripotent cells complicating their adaption due to insufficiently defined starting conditions. The protocol described here was initiated from a defined cell number of dispersed single cells and tested on three different human embryonic stem cell lines and one human induced pluripotent stem cell line. Combined activation of ActivinA/Nodal signaling and GSK3 inhibition for the first 24 h,followed by ActivinA/Nodal signaling efficiently induced the DE state. Activation of ActivinA/Nodal signaling alone was not effective. Efficient GSK3 inhibition allowed the reduction of the ActivinA concentration during the entire protocol. A feeder-independent cultivation of pluripotent cells was preferred to achieve the high efficiency and robustness since feeder cells hindered the differentiation process. Additionally,inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway was not required,nonetheless yielding high cell numbers efficiently committed toward the DE. Finally,the endoderm generated could be differentiated further into PDX1-positive pan-pancreatic cells and NGN3-positive endocrine progenitors. Thus,this efficient and robust DE differentiation protocol is a step forward toward better reproducibility due to the well-defined conditions based on dispersed single cells from feeder-free-cultivated human pluripotent cells.
View Publication
Reference
Wen Z et al. (NOV 2014)
Nature 515 7527 414--418
Synaptic dysregulation in a human iPS cell model of mental disorders
Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders,and /`a disease of synapses/' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies,little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare,multiply affected,large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and,furthermore,dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.
View Publication
Reference
Hawksworth OA et al. (DEC 2014)
Stem Cells 32 12 3278--3284
Brief report: Complement C5a promotes human embryonic stem cell pluripotency in the absence of FGF2
The complement activation product,C5a,is a pivotal member of the innate immune response; however,a diverse number of nonimmune functions are now being ascribed to C5a signaling,including roles during embryonic development. Here,we identify the expression of the C5a precursor protein,C5,as well as the C5a receptors,C5aR and C5L2,in both human embryonic stem cells and human-induced pluripotent stem cells. We show that administration of a physiologically relevant dose of purified human C5a (1 nM) stimulates activation of ERK1/2 and AKT signaling pathways,and is able to promote maintenance of the pluripotent state in the absence of FGF2. C5a also reduced cell loss following dissociation of human pluripotent stem cells. Our results reveal that complement C5a signaling supports human stem cell pluripotency and survival,and thus may play a key role in shaping early human embryonic development. Stem Cells 2014;32:3278-3284.
View Publication
Reference
Ninomiya H et al. (JAN 2015)
In vitro cellular & developmental biology. Animal 51 1 1--8
Improved efficiency of definitive endoderm induction from human induced pluripotent stem cells in feeder and serum-free culture system
Improvement of methods to produce endoderm-derived cells from pluripotent stem cells is important to realize high-efficient induction of endodermal tissues such as pancreas and hepatocyte. Difficulties hampering such efforts include the low efficiency of definitive endoderm cell induction and establishing appropriate defined culture conditions to ensure a safe cell source for human transplantation. Based on previous studies,we revised the experimental condition of definitive endoderm induction in feeder- and serum-free culture. Our results suggested that CHIR99021 is more effective than Wnt3A ligand in feeder- and serum-free conditions. In addition,keeping cell density low during endoderm induction is important for the efficiency. On the other hand,we showed that overtreatment with CHIR99021 converted the cells into BRACHYURY-expressing posterior mesoderm cells rather than endoderm,indicating strict CHIR99021 treatment requirements for endoderm differentiation. Nevertheless,these results should enable better control in the production of definitive endoderm-derived cells.
View Publication
Reference
Krivega M et al. (NOV 2014)
Reproduction 148 5 531--544
Car expression in human embryos and hesc illustrates its role in pluripotency and tight junctions
Coxsackie virus and adenovirus receptor,CXADR (CAR),is present during embryogenesis and is involved in tissue regeneration,cancer and intercellular adhesion. We investigated the expression of CAR in human preimplantation embryos and embryonic stem cells (hESC) to identify its role in early embryogenesis and differentiation. CAR protein was ubiquitously present during preimplantation development. It was localised in the nucleus of uncommitted cells,from the cleavage stage up to the precursor epiblast,and corresponded with the presence of soluble CXADR3/7 splice variant. CAR was displayed on the membrane,involving in the formation of tight junction at compaction and blastocyst stages in both outer and inner cells,and CAR corresponded with the full-length CAR-containing transmembrane domain. In trophectodermal cells of hatched blastocysts,CAR was reduced in the membrane and concentrated in the nucleus,which correlated with the switch in RNA expression to the CXADR4/7 and CXADR2/7 splice variants. The cells in the outer layer of hESC colonies contained CAR on the membrane and all the cells of the colony had CAR in the nucleus,corresponding with the transmembrane CXADR and CXADR4/7. Upon differentiation of hESC into cells representing the three germ layers and trophoblast lineage,the expression of CXADR was downregulated. We concluded that CXADR is differentially expressed during human preimplantation development. We described various CAR expressions: i) soluble CXADR marking undifferentiated blastomeres; ii) transmembrane CAR related with epithelial-like cell types,such as the trophectoderm (TE) and the outer layer of hESC colonies; and iii) soluble CAR present in TE nuclei after hatching. The functions of these distinct forms remain to be elucidated.
View Publication
Reference
Liu J et al. (NOV 2014)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 28 11 4642--4656
A reciprocal antagonism between miR-376c and TGF-$\$ regulates neural differentiation of human pluripotent stem cells.
Differentiation of neural lineages from human pluripotent stem cells (hPSCs) raises the hope of generating functional cells for the treatment of neural diseases. However,current protocols for differentiating hPSCs into neural lineages remain inefficient and largely variable between different hPSC lines. We report that microRNA 376c (miR-376c) significantly enhanced neural differentiation of hPSCs in a defined condition by suppressing SMAD4,the co-SMAD for TGF-β signaling. Downstream,SMAD4 directly bound and suppressed PAX6,the critical neural lineage specification factor. Interestingly,we also found that SMAD4 binds and suppresses miR-376c clusters in undifferentiated hESCs. In summary,our findings revealed a reciprocal antagonism between miR-376c and SMAD signaling that regulates cell fate during human neural differentiation.-Liu,J.,Wang,L.,Su,Z.,Wu,W.,Cai,X.,Li,D.,Hou,J.,Pei,D.,Pan,G. A reciprocal antagonism between miR-376c and TGF-β signaling regulates neural differentiation of hPSCs.
View Publication
Reference
Cortes CJ et al. (SEP 2014)
Nature Neuroscience 17 9 1180--1189
Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA
Ovchinnikov DA et al. (SEP 2014)
Stem cell research 13 2 251--261
Transgenic human ES and iPS reporter cell lines for identification and selection of pluripotent stem cells in vitro
Optimization of pluripotent stem cell expansion and differentiation is facilitated by biological tools that permit non-invasive and dynamic monitoring of pluripotency,and the ability to select for an undifferentiated input cell population. Here we report on the generation and characterisation of clonal human embryonic stem (HES3,H9) and human induced pluripotent stem cell lines (UQEW01i-epifibC11) that have been stably modified with an artificial EOS(C3+) promoter driving expression of EGFP and puromycin resistance-conferring proteins. We show that EGFP expression faithfully reports on the pluripotency status of the cells in these lines and that antibiotic selection allows for an efficient elimination of differentiated cells from the cultures. We demonstrate that the extinction of the expression of the pluripotency reporter during differentiation closely correlates with the decrease in expression of conventional pluripotency markers,such as OCT4 (POU5F1),TRA-1-60 and SSEA4 when screening across conditions with various levels of pluripotency-maintaining or differentiation-inducing signals. We further illustrate the utility of these lines for real-time monitoring of pluripotency in embryoid bodies and microfluidic bioreactors.
View Publication
Reference
Vanuytsel K et al. (SEP 2014)
Stem Cell Research 13 2 240--250
FANCA knockout in human embryonic stem cells causes a severe growth disadvantage
Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood,aside from numerous congenital abnormalities. FA mouse models have been generated; however,they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero,a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology,we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential,disruption of the second allele causes a severe growth disadvantage. As a result,heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele,quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning,this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage. ?? 2014.
View Publication