Fang F et al. (APR 2014)
Journal of cell science 127 Pt 7 1428--40
The role of Hath6, a newly identified shear-stress-responsive transcription factor, in endothelial cell differentiation and function.
The key regulators of endothelial differentiation that is induced by shear stress are mostly unclear. Human atonal homolog 6 (Hath6 or ATOH8) is an endothelial-selective and shear-stress-responsive transcription factor. In this study,we sought to elucidate the role of Hath6 in the endothelial specification of embryonic stem cells. In a stepwise human embryonic stem cell to endothelial cell (hESC-EC) induction system,Hath6 mRNA was upregulated synchronously with endothelial determination. Subsequently,gain-of-function and loss-of-function studies of Hath6 were performed using the hESC-EC induction model and endothelial cell lines. The overexpression of Hath6,which mimics shear stress treatment,resulted in an increased CD45(-)CD31(+)KDR(+) population,a higher tubular-structure-formation capacity and increased endothelial-specific gene expression. By contrast,the knockdown of Hath6 mRNA markedly decreased endothelial differentiation. Hath6 also facilitated the maturation of endothelial cells in terms of endothelial gene expression,tubular-structure formation and cell migration. We further demonstrated that the gene encoding eNOS is a direct target of Hath6 through a reporter system assay and western blot analysis,and that the inhibition of eNOS diminishes hESC-EC differentiation. These results suggest that eNOS plays a key role in linking Hath6 to the endothelial phenotype. Further in situ hybridization studies in zebrafish and mouse embryos indicated that homologs of Hath6 are involved in vasculogenesis and angiogenesis. This study provides the first confirmation of the positive impact of Hath6 on human embryonic endothelial differentiation and function. Moreover,we present a potential signaling pathway through which shear stress stimulates endothelial differentiation.
View Publication
Reference
Ko J-YY et al. (APR 2014)
Biomaterials 35 11 3571--3581
In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells.
The purpose of this study was to investigate the chondrogenic features of human induced pluripotent stem cells (hiPSCs) and examine the differences in the chondrogenesis between hiPSCs and human bone marrow-derived MSCs (hBMMSCs). Embryoid bodies (EBs) were formed from undifferentiated hiPSCs. After EBs were dissociated into single cells,chondrogenic culture was performed in pellets and alginate hydrogel. Chondro-induced hiPSCs were implanted in osteochondral defects created on the patellar groove of immunosuppressed rats and evaluated after 12 weeks. The ESC markers NANOG,SSEA4 and OCT3/4 disappeared while the mesodermal marker BMP-4 appeared in chondro-induced hiPSCs. After 21 days of culture,greater glycosaminoglycan contents and better chondrocytic features including lacuna and abundant matrix formation were observed from chondro-induced hiPSCs compared to chondro-induced hBMMSCs. The expression of chondrogenic markers including SOX-9,type II collagen,and aggrecan in chondro-induced hiPSCs was comparable to or greater than chondro-induced hBMMSCs. A remarkably low level of hypertrophic and osteogenic markers including type X collagen,type I collagen and Runx-2 was noted in chondro-induced hiPSCs compared to chondro-induced hBMMSCs. hiPSCs had significantly greater methylation of several CpG sites in COL10A1 promoter than hBMMSCs in either undifferentiated or chondro-induced state,suggesting an epigenetic cause of the difference in hypertrophy. The defects implanted with chondro-induced hiPSCs showed a significantly better quality of cartilage repair than the control defects,and the majority of cells in the regenerated cartilage consisted of implanted hiPSCs. ?? 2014 Elsevier Ltd.
View Publication
Reference
Ng WL et al. (JAN 2014)
Cell death & disease 5 1 e1024
OCT4 as a target of miR-34a stimulates p63 but inhibits p53 to promote human cell transformation
Human cell transformation is a key step for oncogenic development,which involves multiple pathways; however,the mechanism remains unclear. To test our hypothesis whether cell oncogenic transformation shares some mechanisms with the process of reprogramming non-stem cells to induced pluripotent stem cells (iPSC),we studied the relationship among the key factors for promoting or inhibiting iPSC in radiation-transformed human epithelial cell lines derived from different tissues (lung,breast and colon). We unexpectedly found that p63 and OCT4 were highly expressed (accompanied by low expressed p53 and miR-34a) in all transformed cell lines examined when compared with their non-transformed counterparts. We further elucidated the relationship of these factors: the 3p strand of miR-34a directly targeted OCT4 by binding to the 3′ untranslated region (3′-UTR) of OCT4 and,OCT4,in turn,stimulated p63 but inhibited p53 expression by binding to a specific region of the p63 or p53 promoter. Moreover,we revealed that the effects of OCT4 on promoting cell oncogenic transformation were by affecting p63 and p53. These results support that a positive loop exists in human cells: OCT4 upregulation as a consequence of inhibition of miR-34a,promotes p63 but suppresses p53 expression,which further stimulates OCT4 upregulation by downregulating miR-34a. This functional loop contributes significantly to cell transformation and,most likely,also to the iPSC process.
View Publication
Reference
Belzile J-P et al. (APR 2014)
Journal of virology 88 8 4021--4039
Human cytomegalovirus infection of human embryonic stem cell-derived primitive neural stem cells is restricted at several steps but leads to the persistence of viral DNA.
UNLABELLED Congenital human cytomegalovirus (HCMV) infection is a major cause of central nervous system structural anomalies and sensory impairments. It is likely that the stage of fetal development,as well as the state of differentiation of susceptible cells at the time of infection,affects the severity of the disease. We used human embryonic stem (ES) cell-derived primitive prerosette neural stem cells (pNSCs) and neural progenitor cells (NPCs) maintained in chemically defined conditions to study HCMV replication in cells at the early stages of neural development. In contrast to what was observed previously using fetus-derived NPCs,infection of ES cell-derived pNSCs with HCMV was nonprogressive. At a low multiplicity of infection,we observed only a small percentage of cells expressing immediate-early genes (IE) and early genes. IE expression was found to be restricted to cells negative for the anterior marker FORSE-1,and treatment of pNSCs with retinoic acid restored IE expression. Differentiation of pNSCs into NPCs restored IE expression but not the transactivation of early genes. Virions produced in NPCs and pNSCs were exclusively cell associated and were mostly non-neural tropic. Finally,we found that viral genomes could persist in pNSC cultures for up to a month after infection despite the absence of detectable IE expression by immunofluorescence,and infectious virus could be produced upon differentiation of pNSCs to neurons. In conclusion,our results highlight the complex array of hurdles that HCMV must overcome in order to infect primitive neural stem cells and suggest that these cells might act as a reservoir for the virus. IMPORTANCE Human cytomegalovirus (HCMV) is a betaherpesvirus that is highly prevalent in the population. HCMV infection is usually asymptomatic but can lead to severe consequences in immunosuppressed individuals. HCMV is also the most important infectious cause of congenital developmental birth defects. Manifestations of fetal HCMV disease range from deafness and learning disabilities to more severe symptoms such as microcephaly. In this study,we have used embryonic stem cells to generate primitive neural stem cells and have used these to model HCMV infection of the fetal central nervous system (CNS) in vitro. Our results reveal that these cells,which are similar to those present in the developing neural tube,do not support viral replication but instead likely constitute a viral reservoir. Future work will define the effect of viral persistence on cellular functions as well as the exogenous signals leading to the reactivation of viral replication in the CNS.
View Publication
Reference
Ou X et al. (MAY 2014)
Stem Cells 32 5 1183--1194
SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress
SIRT1,an NAD-dependent deacetylase,plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress,and has been linked to age-related reactive oxygen species (ROS) generation,which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-,than in WT mESCs. However,addition of 3-methyladenine,a widely used autophagy inhibitor,in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II,lowered expression of Beclin-1,and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs,suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs,inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress,effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014;32:1183-1194
View Publication
Reference
Jiang G et al. (SEP 2014)
Tissue engineering. Part C,Methods 20 9 731--740
Induced pluripotent stem cells from human placental chorion for perinatal tissue engineering applications.
The reliable derivation of induced pluripotent stem cells (iPSCs) from a noninvasive autologous source at birth would facilitate the study of patient-specific in vitro modeling of congenital diseases and would enhance ongoing efforts aimed at developing novel cell-based treatments for a wide array of fetal and pediatric disorders. Accordingly,we have successfully generated iPSCs from human fetal chorionic somatic cells extracted from term pregnancies by ectopic expression of OCT4,SOX2,KLF4,and cMYC. The isolated parental somatic cells exhibited an immunophenotypic profile consistent with that of chorionic mesenchymal stromal cells (CMSCs). CMSC-iPSCs maintained pluripotency in feeder-free systems for more than 15 passages based on morphology,immunocytochemistry,and gene expression studies and were capable of embryoid body formation with spontaneous trilineage differentiation. CMSC-iPSCs could be selectively differentiated in vitro into various germ layer derivatives,including neural stem cells,beating cardiomyocytes,and definitive endoderm. This study demonstrates the feasibility of term placental chorion as a novel noninvasive alternative to dermal fibroblasts and cord blood for human perinatal iPSC derivation and may provide additional insights regarding the reprogramming capabilities of extra-embryonic tissues as they relate to developmental ontogeny and perinatal tissue engineering applications.
View Publication
Reference
Suzuki DE et al. (JUN 2014)
Stem cells and development 23 11 1266--1274
Knockdown of E2F2 inhibits tumorigenicity, but preserves stemness of human embryonic stem cells.
Tumorigenicity of human pluripotent stem cells is a major threat limiting their application in cell therapy protocols. It remains unclear,however,whether suppression of tumorigenic potential can be achieved without critically affecting pluripotency. A previous study has identified hyperexpressed genes in cancer stem cells,among which is E2F2,a gene involved in malignant transformation and stem cell self-renewal. Here we tested whether E2F2 knockdown would affect the proliferative capacity and tumorigenicity of human embryonic stem cells (hESC). Transient E2F2 silencing in hESC significantly inhibited expression of the proto-oncogenes BMI1 and HMGA1,in addition to proliferation of hESC,indicated by a higher proportion of cells in G1,fewer cells in G2/M phase,and a reduced capacity to generate hESC colonies in vitro. Nonetheless,E2F2-silenced cells kept expression of typical pluripotency markers and displayed differentiation capacity in vitro. More importantly,E2F2 knockdown in hESC significantly inhibited tumor growth in vivo,which was considerably smaller than tumors generated from control hESC,although displaying typical teratoma traits,a major indicator of pluripotency retention in E2F2-silenced cells. These results suggest that E2F2 knockdown can inhibit hESC proliferation and tumorigenicity without significantly harming stemness,providing a rationale to future protocols aiming at minimizing risks related to therapeutic application of cells and/or products derived from human pluripotent cells.
View Publication
Reference
Huang K et al. (JAN 2014)
Science China Life Sciences 57 2 162--70
Neural progenitor cells from human induced pluripotent stem cells generated less autogenous immune response
The breakthrough development of induced pluripotent stem cells (iPSCs) raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells. However,whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear. In this study,we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with autogenous peripheral blood mononuclear cells (PBMCs),we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation. However,a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs. Furthermore,no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells (CD3+CD8− T cells,CD3+CD8+ T cells or CD3−CD56+ NK cells) by NPCs in both PBMC and T cell co-culture systems. These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants,and thus set a base for further preclinical evaluation of human iPSCs.
View Publication
Reference
Guan X et al. (MAR 2014)
Stem Cell Research 12 2 467--480
Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery
The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs) have been employed to generate beating cardiomyocytes from a patient's skin or blood cells. Here,iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD). Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs). USCs express the canonical reprogramming factors c-myc and klf4,and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry,RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patient's dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery. ?? 2013.
View Publication
Reference
Bershteyn M et al. (MAR 2014)
Nature 507 7490 99--103
Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells.
Ring chromosomes are structural aberrations commonly associated with birth defects,mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome,and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes,no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division,ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations,enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of /`chromosome therapy/' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition,our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control,which is of critical relevance to human development and disease.
View Publication
Reference
Loh KM et al. (JAN 2014)
Cell Stem Cell 14 2 237--252
Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations
Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore,we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation. With striking temporal dynamics,BMP and Wnt initially specified anterior primitive streak (progenitor to endoderm),yet,24 hr later,suppressed endoderm and induced mesoderm. At lineage bifurcations,cross-repressive signals separated mutually exclusive fates; TGF-?? and BMP/MAPK respectively induced pancreas versus liver from endoderm by suppressing the alternate lineage. We systematically blockaded alternate fates throughout multiple consecutive bifurcations,thereby efficiently differentiating multiple hPSC lines exclusively into endoderm and its derivatives. Comprehensive transcriptional and chromatin mapping of highly pure endodermal populations revealed that endodermal enhancers existed in a surprising diversity of pre-enhancer" states before activation�
View Publication
Reference
Gasimli L et al. (JUN 2014)
Biochimica et Biophysica Acta (BBA) - General Subjects 1840 6 1993--2003
Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages
Background Proteoglycans are found on the cell surface and in the extracellular matrix,and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate,and therefore represent an excellent tool to manipulate these pathways. Despite their importance,there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation. Methods Human embryonic stem cell line WA09 (H9) was differentiated into early mesoderm and endoderm lineages,and the glycosaminoglycanomic changes accompanying these transitions were studied using transcript analysis,immunoblotting,immunofluorescence and disaccharide analysis. Results Pluripotent H9 cell lumican had no glycosaminoglycan chains whereas in splanchnic mesoderm lumican was glycosaminoglycanated. H9 cells have primarily non-sulfated heparan sulfate chains. On differentiation towards splanchnic mesoderm and hepatic lineages N-sulfo group content increases. Differences in transcript expression of NDST1,HS6ST2 and HS6ST3,three heparan sulfate biosynthetic enzymes,within splanchnic mesoderm cells compared to H9 cells correlate to changes in glycosaminoglycan structure. Conclusions Differentiation of embryonic stem cells markedly changes the proteoglycanome. General significance The glycosaminoglycan biosynthetic pathway is complex and highly regulated,and therefore,understanding the details of this pathway should enable better control with the aim of directing stem cell differentiation. ?? 2014 Elsevier B.V. All rights reserved.
View Publication