Zeng S et al. (FEB 2014)
Journal of cell science 127 Pt 4 752--762
Telomerase-mediated telomere elongation from human blastocysts to embryonic stem cells.
High telomerase activity is a characteristic of human embryonic stem cells (hESCs),however,the regulation and maintenance of correct telomere length in hESCs is unclear. In this study we investigated telomere elongation in hESCs in vitro and found that telomeres lengthened from their derivation in blastocysts through early expansion,but stabilized at later passages. We report that the core unit of telomerase,hTERT,was highly expressed in hESCs in blastocysts and throughout long-term culture; furthermore,this was regulated in a Wnt-β-catenin-signaling-dependent manner. Our observations that the alternative lengthening of telomeres (ALT) pathway was suppressed in hESCs and that hTERT knockdown partially inhibited telomere elongation,demonstrated that high telomerase activity was required for telomere elongation. We observed that chromatin modification through trimethylation of H3K9 and H4K20 at telomeric regions decreased during early culture. This was concurrent with telomere elongation,suggesting that epigenetic regulation of telomeric chromatin may influence telomerase function. By measuring telomere length in 96 hESC lines,we were able to establish that telomere length remained relatively stable at 12.02±1.01 kb during later passages (15-95). In contrast,telomere length varied in hESCs with genomic instability and hESC-derived teratomas. In summary,we propose that correct,stable telomere length may serve as a potential biomarker for genetically stable hESCs.
View Publication
Reference
Gage BK et al. (DEC 2013)
PLoS ONE 8 12 e82076
Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells
Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers,and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells,to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells,we examined the effect of varying initial cell seeding density from 1.3 x 104 cells/cm2 to 5.3 x 104 cells/cm2 followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1,PTF1a,NGN3,ARX,and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin,glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression,followed by pancreatic endocrine specification marker expression (BRN4,PAX4,ARX,NEUROD1,NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin,glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment,which precedes pancreatic endocrine cell formation. This work highlights the need to examine standard culture variables such as seeding density when optimizing hESC differentiation protocols.
View Publication
Reference
Matsumoto Y et al. (DEC 2013)
Orphanet journal of rare diseases 8 1 190
Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation.
BACKGROUND: Abnormal activation of endochondral bone formation in soft tissues causes significant medical diseases associated with disability and pain. Hyperactive mutations in the bone morphogenetic protein (BMP) type 1 receptor ACVR1 lead to fibrodysplasia ossificans progressiva (FOP),a rare genetic disorder characterized by progressive ossification in soft tissues. However,the specific cellular mechanisms are unclear. In addition,the difficulty obtaining tissue samples from FOP patients and the limitations in mouse models of FOP hamper our ability to dissect the pathogenesis of FOP.backslashnbackslashnMETHODS: To address these challenges and develop a disease model in a dish"�
View Publication
Reference
Fu J-DD et al. (SEP 2013)
Stem Cell Reports 1 3 235--247
Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State
Summary Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4,MEF2C,and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However,GMT alone appears insufficient in human fibroblasts,at least in vitro. Here,we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells,fetal heart,and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming,including sarcomere formation,calcium transients,and action potentials,although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore,we found that transforming growth factor β signaling was important for,and improved the efficiency of,human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage,and lay the foundation for future refinements in vitro and in vivo. textcopyright 2013 The Authors.
View Publication
Reference
Wang J et al. (JAN 2014)
Journal of Biological Chemistry 289 4 2384--2395
Epigenetic regulation of miR-302 by JMJD1C inhibits neural differentiation of human embryonic stem cells.
It has been recently reported that the regulatory circuitry formed by OCT4,miR-302,and NR2F2 controls both pluripotency and neural differentiation of human embryonic stem cells (hESCs). We show here that JMJD1C,a histone 3 lysine 9 (H3K9) demethylase expressed in hESCs,directly interacts with this circuitry. hESCs with stable knockdown of JMJD1C remain pluripotent while having reduced miR-302 expression,decreased BMP signaling,and enhanced TGF$\$ JMJD1C binds to the miR-302 promoter and reduces H3K9 methylation. Withdrawal of basic fibroblast growth factor (bFGF) from the culture induces neural differentiation of the knockdown,but not the control,cells within 3 days,accompanied by elevated NR2F2 expression. This can be attenuated with miR-302 mimics or an H3K9 methytransferase inhibitor. Together,our findings suggest that JMJD1C represses neural differentiation of hESCs at least partially by epigenetically sustaining miR-302 expression and that JMJD1C knockdown is sufficient to trigger neural differentiation upon withdrawal of exogenous bFGF.
View Publication
Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast
Human embryonic stem cells (hESCs) are derived from the inner cell mass of the blastocyst. Despite sharing the common property of pluripotency,hESCs are notably distinct from epiblast cells of the preimplantation blastocyst. Here we use a combination of three small-molecule inhibitors to sustain hESCs in a LIF signaling-dependent hESC state (3iL hESCs) with elevated expression of NANOG and epiblast-enriched genes such as KLF4,DPPA3,and TBX3. Genome-wide transcriptome analysis confirms that the expression signature of 3iL hESCs shares similarities with native preimplantation epiblast cells. We also show that 3iL hESCs have a distinct epigenetic landscape,characterized by derepression of preimplantation epiblast genes. Using genome-wide binding profiles of NANOG and OCT4,we identify enhancers that contribute to rewiring of the regulatory circuitry. In summary,our study identifies a distinct hESC state with defined regulatory circuitry that will facilitate future analysis of human preimplantation embryogenesis and pluripotency.
View Publication
Reference
Ou W et al. (NOV 2013)
PLoS ONE 8 11 e81131
Targeting of Herpes Simplex Virus 1 Thymidine Kinase Gene Sequences into the OCT4 Locus of Human Induced Pluripotent Stem Cells
The in vitro differentiation of human induced pluripotent stem cells (hiPSC) to generate specific types of cells is inefficient,and the remaining undifferentiated cells may form teratomas. This raises safety concerns for clinical applications of hiPSC-derived cellular products. To improve the safety of hiPSC,we attempted to site-specifically insert a herpes simplex virus 1 thymidine kinase (HSV1-TK) suicide gene at the endogenous OCT4 (POU5F1) locus of hiPSC. Since the endogenous OCT4 promoter is active in undifferentiated cells only,we speculated that the HSV1-TK suicide gene will be transcribed in undifferentiated cells only and that the remaining undifferentiated cells can be depleted by treating them with the prodrug ganciclovir (GCV) prior to transplantation. To insert the HSV1-TK gene at the OCT4 locus,we cotransfected hiPSC with a pair of plasmids encoding an OCT4-specific zinc finger nuclease (ZFN) and a donor plasmid harboring a promoter-less transgene cassette consisting of HSV1-TK and puromycin resistance gene sequences,flanked by OCT4 gene sequences. Puromycin resistant clones were established and characterized regarding their sensitivity to GCV and the site of integration of the HSV1-TK/puromycin resistance gene cassette. Of the nine puromycin-resistant iPSC clones analyzed,three contained the HSV1-TK transgene at the OCT4 locus,but they were not sensitive to GCV. The other six clones were GCV-sensitive,but the TK gene was located at off-target sites. These TK-expressing hiPSC clones remained GCV sensitive for up to 90 days,indicating that TK transgene expression was stable. Possible reasons for our failed attempt to selectively target the OCT4 locus are discussed.
View Publication
Reference
Marchand M et al. (JAN 2014)
Stem cells translational medicine 3 1 91--97
Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.
Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately,with low efficiencies,from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model,elucidate,and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor,basic fibroblast growth factor,and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media,these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells,respectively. Furthermore,we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.
View Publication
Reference
Goh PA et al. (NOV 2013)
PLoS ONE 8 11 e81622
A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells
A systematic evaluation of three different methods for generating induced pluripotent stem (iPS) cells was performed using the same set of parental cells in our quest to develop a feeder independent and xeno-free method for somatic cell reprogramming that could be transferred into a GMP environment. When using the BJ fibroblast cell line,the highest reprogramming efficiency (1.89% of starting cells) was observed with the mRNA based method which was almost 20 fold higher than that observed with the retrovirus (0.2%) and episomal plasmid (0.10%) methods. Standard characterisation tests did not reveal any differences in an array of pluripotency markers between the iPS lines derived using the various methods. However,when the same methods were used to reprogram three different primary fibroblasts lines,two derived from patients with rapid onset parkinsonism dystonia and one from an elderly healthy volunteer,we consistently observed higher reprogramming efficiencies with the episomal plasmid method,which was 4 fold higher when compared to the retroviral method and over 50 fold higher than the mRNA method. Additionally,with the plasmid reprogramming protocol,recombinant vitronectin and synthemax® could be used together with commercially available,fully defined,xeno-free essential 8 medium without significantly impacting the reprogramming efficiency. To demonstrate the robustness of this protocol,we reprogrammed a further 2 primary patient cell lines,one with retinosa pigmentosa and the other with Parkinsons disease. We believe that we have optimised a simple and reproducible method which could be used as a starting point for developing GMP protocols,a prerequisite for generating clinically relevant patient specific iPS cells.
View Publication
Reference
Yanai A et al. ( 2016)
Methods in molecular biology (Clifton,N.J.) 1307 357--369
Efficient Production of Photoreceptor Precursor Cells from Human Embryonic Stem Cells.
Transplantation of photoreceptor precursor cells (PPCs) differentiated from human embryonic stem cells (hESCs) is a promising approach to treat common blinding diseases such as age-related macular degeneration and retinitis pigmentosa. However,existing PPC generation methods are inefficient. To enhance differentiation protocols for rapid and high-yield production of PPCs,we focused on optimizing the handling of the cells by including feeder-independent growth of hESCs,using size-controlled embryoid bodies (EBs),and addition of triiodothyronine (T3) and taurine to the differentiation medium,with subsequent removal of undifferentiated cells via negative cell-selection. Our novel protocol produces higher yields of PPCs than previously reported while reducing the time required for differentiation,which will help understand retinal diseases and facilitate large-scale preclinical trials.
View Publication
Reference
McIntyre BAS et al. (JAN 2014)
Stem cells translational medicine 3 1 7--17
Expansive generation of functional airway epithelium from human embryonic stem cells.
Production of human embryonic stem cell (hESC)-derived lung progenitors has broad applicability for drug screening and cell therapy; however,this is complicated by limitations in demarcating phenotypic changes with functional validation of airway cell types. In this paper,we reveal the potential of hESCs to produce multipotent lung progenitors using a combined growth factor and physical culture approach,guided by the use of novel markers LIFRα and NRP1. Lung specification of hESCs was achieved by priming differentiation via matrix-specific support,followed by air-liquid interface to allow generation of lung progenitors capable of in vitro maturation into airway epithelial cell types,resulting in functional characteristics such as secretion of pulmonary surfactant,ciliation,polarization,and acquisition of innate immune activity. This approach provided a robust expansion of lung progenitors,allowing in vivo assessment,which demonstrated that only fully differentiated hESC-derived airway cells were retained in the distal airway,where they aided in physiological recovery in immunocompromised mice receiving airway injury. Our study provides a basis for translational applications of hESCs for lung diseases.
View Publication
Reference
Deng Y et al. (JAN 2014)
Carbohydrate Polymers 101 1 36--39
Peptide-decorated polyvinyl alcohol/hyaluronan nanofibers for human induced pluripotent stem cell culture
Realization of the full potential of human induced pluripotent stem cells (hiPSCs) in clinical applications requires development of well-defined conditions for their growth and differentiation. A novel fully defined polyvinyl alcohol/hyaluronan (PVA/HA) polysaccharide nanofiber was developed for hiPSCs culture in commercially available xeno-free,chemically defined medium. Vitronectin peptide (VP) was immobilized to PVA/HA nanofibers through NHS/EDC chemistry. The hiPSCs successfully grew and proliferated on the VP-decorated PVA/HA nanofibers,similar to those on MatrigelTM. Such well-defined,xeno-free and safe nanofiber substrate that supports culture of hiPSCs will not only help to accelerate the translational perspectives of hiPSCs,but also provide a platform to investigate the cell-nanofiber interaction mechanisms that regulate stem cell proliferation and differentiation. ?? 2013 Elsevier Ltd. All rights reserved.
View Publication