Li Y et al. (OCT 2013)
Cell Stem Cell 13 4 446--458
Global Transcriptional and Translational Repression in Human-Embryonic-Stem-Cell-Derived Rett Syndrome Neurons
Summary Rett syndrome (RTT) is caused by mutations of MECP2,a methyl CpG binding protein thought to act as a global transcriptional repressor. Here we show,using an isogenic human embryonic stem cell model of RTT,that MECP2 mutant neurons display key molecular and cellular features of this disorder. Unbiased global gene expression analyses demonstrate that MECP2 functions as a global activator in neurons but not in neural precursors. Decreased transcription in neurons was coupled with a significant reduction in nascent protein synthesis and lack of MECP2 was manifested as a severe defect in the activity of the AKT/mTOR pathway. Lack of MECP2 also leads to impaired mitochondrial function in mutant neurons. Activation of AKT/mTOR signaling by exogenous growth factors or by depletion of PTEN boosted protein synthesis and ameliorated disease phenotypes in mutant neurons. Our findings indicate a vital function for MECP2 in maintaining active gene transcription in human neuronal cells.
View Publication
Reference
Lin P-Y et al. (NOV 2013)
Stem cells and development 23 4 372--379
A synthetic peptide-acrylate surface for production of insulin-producing cells from human embryonic stem cells.
Human embryonic stem cells (hESCs),due to their self-renewal capacity and pluripotency,have become a potential source of transplantable $\$-cells for the treatment of diabetes. However,it is imperative that the derived cells fulfill the criteria for clinical treatment. In this study,we replaced common Matrigel with a synthetic peptide-acrylate surface (Synthemax) to expand undifferentiated hESCs and direct their differentiation in a defined and serum-free medium. We confirmed that the cells still expressed pluripotent markers,had the ability to differentiate into three germ layers,and maintained a normal karyotype after 10 passages of subculture. Next,we reported an efficient protocol for deriving nearly 86% definitive endoderm cells from hESCs under serum-free conditions. Moreover,we were able to obtain insulin-producing cells within 21 days following a simple three-step protocol. The results of immunocytochemical and quantitative gene expression analysis showed that the efficiency of induction was not significantly different between the Synthemax surface and the Matrigel-coated surface. Thus,we provided a totally defined condition from hESC culture to insulin-producing cell differentiation,and the derived cells could be a therapeutic resource for diabetic patients in the future.
View Publication
Reference
Akdemir KC et al. (JAN 2014)
Nucleic Acids Research 42 1 205--223
Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells
How tumor suppressor p53 selectively responds to specific signals,especially in normal cells,is poorly understood. We performed genome-wide profiling of p53 chromatin interactions and target gene expression in human embryonic stem cells (hESCs) in response to early differentiation,induced by retinoic acid,versus DNA damage,caused by adriamycin. Most p53-binding sites are unique to each state and define stimulus-specific p53 responses in hESCs. Differentiation-activated p53 targets include many developmental transcription factors and,in pluripotent hESCs,are bound by OCT4 and NANOG at chromatin enriched in both H3K27me3 and H3K4me3. Activation of these genes occurs with recruitment of p53 and H3K27me3-specific demethylases,UTX and JMJD3,to chromatin. In contrast,genes associated with cell migration and motility are bound by p53 specifically after DNA damage. Surveillance functions of p53 in cell death and cell cycle regulation are conserved in both DNA damage and differentiation. Comparative genomic analysis of p53-targets in mouse and human ESCs supports an inter-species divergence in p53 regulatory functions during evolution. Our findings expand the registry of p53-regulated genes to define p53-regulated opposition to pluripotency during early differentiation,a process highly distinct from stress-induced p53 response in hESCs.
View Publication
Reference
Cheng Y et al. ( 2013)
BMC cell biology 14 1 44
Physiological β-catenin signaling controls self-renewal networks and generation of stem-like cells from nasopharyngeal carcinoma.
BACKGROUND: A few reports suggested that low levels of Wnt signaling might drive cell reprogramming,but these studies could not establish a clear relationship between Wnt signaling and self-renewal networks. There are ongoing debates as to whether and how the Wnt/β-catenin signaling is involved in the control of pluripotency gene networks. Additionally,whether physiological β-catenin signaling generates stem-like cells through interactions with other pathways is as yet unclear. The nasopharyngeal carcinoma HONE1 cells have low expression of β-catenin and wild-type expression of p53,which provided a possibility to study regulatory mechanism of stemness networks induced by physiological levels of Wnt signaling in these cells.backslashnbackslashnRESULTS: Introduction of increased β-catenin signaling,haploid expression of β-catenin under control by its natural regulators in transferred chromosome 3,resulted in activation of Wnt/β-catenin networks and dedifferentiation in HONE1 hybrid cell lines,but not in esophageal carcinoma SLMT1 hybrid cells that had high levels of endogenous β-catenin expression. HONE1 hybrid cells displayed stem cell-like properties,including enhancement of CD24(+) and CD44(+) populations and generation of spheres that were not observed in parental HONE1 cells. Signaling cascades were detected in HONE1 hybrid cells,including activation of p53- and RB1-mediated tumor suppressor pathways,up-regulation of Nanog-,Oct4-,Sox2-,and Klf4-mediated pluripotency networks,and altered E-cadherin expression in both in vitro and in vivo assays. qPCR array analyses further revealed interactions of physiological Wnt/β-catenin signaling with other pathways such as epithelial-mesenchymal transition,TGF-β,Activin,BMPR,FGFR2,and LIFR- and IL6ST-mediated cell self-renewal networks. Using β-catenin shRNA inhibitory assays,a dominant role for β-catenin in these cellular network activities was observed. The expression of cell surface markers such as CD9,CD24,CD44,CD90,and CD133 in generated spheres was progressively up-regulated compared to HONE1 hybrid cells. Thirty-four up-regulated components of the Wnt pathway were identified in these spheres.backslashnbackslashnCONCLUSIONS: Wnt/β-catenin signaling regulates self-renewal networks and plays a central role in the control of pluripotency genes,tumor suppressive pathways and expression of cancer stem cell markers. This current study provides a novel platform to investigate the interaction of physiological Wnt/β-catenin signaling with stemness transition networks.
View Publication
Reference
Vazin T et al. (FEB 2014)
Neurobiology of Disease 62 62--72
Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: a model system to study neurotoxicity in Alzheimer's disease.
Alzheimer's disease (AD) is among the most prevalent forms of dementia affecting the aging population,and pharmacological therapies to date have not been successful in preventing disease progression. Future therapeutic efforts may benefit from the development of models that enable basic investigation of early disease pathology. In particular,disease-relevant models based on human pluripotent stem cells (hPSCs) may be promising approaches to assess the impact of neurotoxic agents in AD on specific neuronal populations and thereby facilitate the development of novel interventions to avert early disease mechanisms. We implemented an efficient paradigm to convert hPSCs into enriched populations of cortical glutamatergic neurons emerging from dorsal forebrain neural progenitors,aided by modulating Sonic hedgehog (Shh) signaling. Since AD is generally known to be toxic to glutamatergic circuits,we exposed glutamatergic neurons derived from hESCs to an oligomeric pre-fibrillar forms of Aβ known as globulomers"�
View Publication
Reference
Jiang W et al. (JUN 2013)
Stem Cell Reports 1 1 46--52
WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs
Generation of functional cells from human pluripotent stem cells (PSCs) through in vitro differentiation is a promising approach for drug screening and cell therapy. However,the observed large and unavoidable variation in the differentiation potential of different human embryonic stem cell (hESC)/induced PSC (iPSC) lines makes the selection of an appropriate cell line for the differentiation of a particular cell lineage difficult. Here,we report identification of WNT3 as a biomarker capable of predicting definitive endoderm (DE) differentiation potential of hESCs. We show that the mRNA level of WNT3 in hESCs correlates with their DE differentiation efficiency. In addition,manipulations of hESCs through WNT3 knockdown or overexpression can respectively inhibit or promote DE differentiation in a WNT3 level-dependent manner. Finally,analysis of several hESC lines based on their WNT3 expression levels allowed accurate prediction of their DE differentiation potential. Collectively,our study supports the notion that WNT3 can serve as a biomarker for predicting DE differentiation potential of hESCs. ?? 2013 The Authors.
View Publication
Reference
Venables JP et al. (SEP 2013)
Nature Communications 4 May 2480
MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has provided huge insight into the pathways,mechanisms and transcription factors that control differentiation. Here we use high-throughput RT-PCR technology to take a snapshot of splicing changes in the full spectrum of high- and low-expressed genes during induction of fibroblasts,from several donors,into iPSCs and their subsequent redifferentiation. We uncover a programme of concerted alternative splicing changes involved in late mesoderm differentiation and controlled by key splicing regulators MBNL1 and RBFOX2. These critical splicing adjustments arise early in vertebrate evolution and remain fixed in at least 10 genes (including PLOD2,CLSTN1,ATP2A1,PALM,ITGA6,KIF13A,FMNL3,PPIP5K1,MARK2 and FNIP1),implying that vertebrates require alternative splicing to fully implement the instructions of transcriptional control networks.
View Publication
Reference
Trilck et al. ( 2013)
Orphanet journal of rare diseases 8 144
Niemann-Pick type C1 patient-specific induced pluripotent stem cells display disease specific hallmarks.
BACKGROUND: Niemann-Pick type C1 disease (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. In this lysosomal storage disorder the intracellular transport and sequestration of several lipids like cholesterol is severely impaired,resulting in an accumulation of lipids in late endosomes and lysosomes. The neurological manifestation of the disease is caused by dysfunction and cell death in the central nervous system. Several animal models were used to analyze the impaired pathways. However,the underlying pathogenic mechanisms are still not completely understood and the genetic variability in humans cannot be reflected in these models. Therefore,a human model using patient-specific induced pluripotent stem cells provides a promising approach. METHODS: We reprogrammed human fibroblasts from a NPC1 patient and a healthy control by retroviral transduction with Oct4,Klf4,Sox2 and c-Myc. The obtained human induced pluripotent stem cells (hiPSCs) were characterized by immunocytochemical analyses. Neural progenitor cells were generated and patch clamp recordings were performed for a functional analysis of derived neuronal cells. Filipin stainings and the Amplex Red assay were used to demonstrate and quantify cholesterol accumulation. RESULTS: The hiPSCs expressed different stem cell markers,e.g. Nanog,Tra-1-81 and SSEA4. Using the embryoid body assay,the cells were differentiated in cells of all three germ layers and induced teratoma in immunodeficient mice,demonstrating their pluripotency. In addition,neural progenitor cells were derived and differentiated into functional neuronal cells. Patch clamp recordings revealed voltage dependent channels,spontaneous action potentials and postsynaptic currents. The accumulation of cholesterol in different tissues is the main hallmark of NPC1. In this study we found an accumulation of cholesterol in fibroblasts of a NPC1 patient,derived hiPSCs,and neural progenitor cells,but not in cells derived from fibroblasts of a healthy individual. These findings were quantified by the Amplex Red assay,demonstrating a significantly elevated cholesterol level in cells derived from fibroblasts of a NPC1 patient. CONCLUSIONS: We generated a neuronal model based on induced pluripotent stem cells derived from patient fibroblasts,providing a human in vitro model to study the pathogenic mechanisms of NPC1 disease.
View Publication
Reference
Sun Y et al. (SEP 2013)
eLife 2013 2 e00508
Imaging-based chemical screening reveals activity-dependent neural differentiation of pluripotent stem cells
Pluripotent stem cells have the potential to become most of the cell types that make up an organism. However,the signals that trigger these cells to turn into neurons rather than lung cells or muscle cells,for example,are not fully understood. Proteins called growth factors are known to have a role in this process,as are transcription factors,but it is not clear if other factors are also involved. In an attempt to identify additional mechanisms that could contribute to the formation of neurons,Sun et al. screened more than 2,000 small molecules for their ability to transform mouse pluripotent stem cells into neurons in cell culture. Surprisingly,they found that a compound called selamectin,which is used to treat parasitic flatworm infections,also triggered stem cells to turn into neurons. Selamectin works by blocking a particular type of ion channel in flatworms,but this ion channel is not found in vertebrates,which means that selamectin must be promoting the formation of neurons in mice via a different mechanism. Given that a drug related to selamectin is known to act on a subtype of receptors for the neurotransmitter GABA,Sun et al. wondered whether these receptors—known as GABAA receptors—might also underlie the effects of selamectin. Consistent with this idea,drugs that increased GABAA activity stimulated the formation of neurons,whereas drugs that reduced GABAA function blocked the effects of selamectin. In addition,Sun et al. showed that selamectin triggers human embryonic stem cells to become neurons,and that it also promotes the formation of new neurons in developing zebrafish in vivo. As well as revealing an additional mechanism for the formation of neurons from stem cells,the screening technique introduced by Sun et al. could help to identify further pro-neuronal molecules,which could aid the treatment of neurodevelopmental and neurodegenerative disorders. DOI: [http://dx.doi.org/10.7554/eLife.00508.002][1] [1]: /lookup/doi/10.7554/eLife.00508.002
View Publication
Oct4 maintains the pluripotency of human embryonic stem cells by inactivating p53 through sirt1-mediated deacetylation
Oct4 is critical to maintain the pluripotency of human embryonic stem cells (hESCs); however,the underlying mechanism remains to be fully understood. Here,we report that silencing of Oct4 in hESCs leads to the activation of tumor suppressor p53,inducing the differentiation of hESCs since acute disruption of p53 in p53 conditional knockout (p53CKO) hESCs prevents the differentiation of hESCs after Oct4 depletion. We further discovered that the silencing of Oct4 significantly reduces the expression of Sirt1,a deacetylase known to inhibit p53 activity and the differentiation of ESCs,leading to increased acetylation of p53 at lysine 120 and 164. The importance of Sirt1 in mediating Oct4-dependent pluripotency is revealed by the finding that the ectopic expression of Sirt1 in Oct4-silenced hESCs prevents p53 activation and hESC differentiation. In addition,using knock-in approach,we revealed that the acetylation of p53 at lysine 120 and 164 is required for both stabilization and activity of p53 in hESCs. In summary,our findings reveal a novel role of Oct4 in maintaining the pluripotency of hESCs by suppressing pathways that induce differentiation. Considering that p53 suppresses pluripotency after DNA damage response in ESCs,our findings further underscore the stringent mechanism to coordinate DNA damage response pathways and pluripotency pathways in order to maintain the pluripotency and genomic stability of hESCs.
View Publication
Reference
Huber BC et al. (NOV 2013)
STEM CELLS 31 11 2354--2363
Costimulation-adhesion blockade is superior to Cyclosporine A and prednisone immunosuppressive therapy for preventing rejection of differentiated human embryonic stem cells following transplantation
RATIONALE: Human embryonic stem cell (hESC) derivatives are attractive candidates for therapeutic use. The engraftment and survival of hESC derivatives as xenografts or allografts require effective immunosuppression to prevent immune cell infiltration and graft destruction.backslashnbackslashnOBJECTIVE: To test the hypothesis that a short-course,dual-agent regimen of two costimulation-adhesion blockade agents can induce better engraftment of hESC derivatives compared to current immunosuppressive agents.backslashnbackslashnMETHODS AND RESULTS: We transduced hESCs with a double fusion reporter gene construct expressing firefly luciferase (Fluc) and enhanced green fluorescent protein,and differentiated these cells to endothelial cells (hESC-ECs). Reporter gene expression enabled longitudinal assessment of cell engraftment by bioluminescence imaging. Costimulation-adhesion therapy resulted in superior hESC-EC and mouse EC engraftment compared to cyclosporine therapy in a hind limb model. Costimulation-adhesion therapy also promoted robust hESC-EC and hESC-derived cardiomyocyte survival in an ischemic myocardial injury model. Improved hESC-EC engraftment had a cardioprotective effect after myocardial injury,as assessed by magnetic resonance imaging. Mechanistically,costimulation-adhesion therapy is associated with systemic and intragraft upregulation of T-cell immunoglobulin and mucin domain 3 (TIM3) and a reduced proinflammatory cytokine profile.backslashnbackslashnCONCLUSIONS: Costimulation-adhesion therapy is a superior alternative to current clinical immunosuppressive strategies for preventing the post-transplant rejection of hESC derivatives. By extending the window for cellular engraftment,costimulation-adhesion therapy enhances functional preservation following ischemic injury. This regimen may function through a TIM3-dependent mechanism.
View Publication
Reference
Nizzardo M et al. (JAN 2014)
Human Molecular Genetics 23 2 342--354
Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA41 neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of motor neurons. Currently,there is no effective therapy for ALS. Stem cell transplantation is a potential therapeutic strategy for ALS,and the reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) represents a novel cell source. In this study,we isolated a specific neural stem cell (NSC) population from human iPSCs based on high aldehyde dehydrogenase activity,low side scatter and integrin VLA4 positivity. We assessed the therapeutic effects of these NSCs on the phenotype of ALS mice after intrathecal or intravenous injections. Transplanted NSCs migrated and engrafted into the central nervous system via both routes of injection. Compared with control ALS,treated ALS mice exhibited improved neuromuscular function and motor unit pathology and significantly increased life span,in particular with the systemic administration of NSCs (15%). These positive effects are linked to multiple mechanisms,including production of neurotrophic factors and reduction of micro- and macrogliosis. NSCs induced a decrease in astrocyte number through the activation of the vanilloid receptor TRPV1. We conclude that minimally invasive injections of iPSC-derived NSCs can exert a therapeutic effect in ALS. This study contributes to advancements in iPSC-mediated approaches for treating ALS and other neurodegenerative diseases.
View Publication