Generating a Non-Integrating Human Induced Pluripotent Stem Cell Bank from Urine-Derived Cells
Induced pluripotent stem cell (iPS cell) holds great potential for applications in regenerative medicine,drug discovery,and disease modeling. We describe here a practical method to generate human iPS cells from urine-derived cells (UCs) under feeder-free,virus-free,serum-free condition and without oncogene c-MYC. We showed that this approach could be applied in a large population with different genetic backgrounds. UCs are easily accessible and exhibit high reprogramming efficiency,offering advantages over other cell types used for the purpose of iPS generation. Using the approach described in this study,we have generated 93 iPS cell lines from 20 donors with diverse genetic backgrounds. The non-viral iPS cell bank with these cell lines provides a valuable resource for iPS cells research,facilitating future applications of human iPS cells.
View Publication
Reference
Suissa Y et al. (AUG 2013)
PLoS ONE 8 8 e70397
Gastrin: A Distinct Fate of Neurogenin3 Positive Progenitor Cells in the Embryonic Pancreas
Neurogenin3+ (Ngn3+) progenitor cells in the developing pancreas give rise to five endocrine cell types secreting insulin,glucagon,somatostatin,pancreatic polypeptide and ghrelin. Gastrin is a hormone produced primarily by G-cells in the stomach,where it functions to stimulate acid secretion by gastric parietal cells. Gastrin is expressed in the embryonic pancreas and is common in islet cell tumors,but the lineage and regulators of pancreatic gastrin+ cells are not known. We report that gastrin is abundantly expressed in the embryonic pancreas and disappears soon after birth. Some gastrin+ cells in the developing pancreas co-express glucagon,ghrelin or pancreatic polypeptide,but many gastrin+ cells do not express any other islet hormone. Pancreatic gastrin+ cells express the transcription factors Nkx6.1,Nkx2.2 and low levels of Pdx1,and derive from Ngn3+ endocrine progenitor cells as shown by genetic lineage tracing. Using mice deficient for key transcription factors we show that gastrin expression depends on Ngn3,Nkx2.2,NeuroD1 and Arx,but not Pax4 or Pax6. Finally,gastrin expression is induced upon differentiation of human embryonic stem cells to pancreatic endocrine cells expressing insulin. Thus,gastrin+ cells are a distinct endocrine cell type in the pancreas and an alternative fate of Ngn3+ cells.
View Publication
Reference
Son MY et al. (NOV 2013)
Stem Cells 31 11 2374--2387
Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency
Reduced expression 1 (REX1) is a widely used pluripotency marker,but little is known about its roles in pluripotency. Here,we show that REX1 is functionally important in the reacquisition and maintenance of pluripotency. REX1-depleted human pluripotent stem cells (hPSCs) lose their self-renewal capacity and full differentiation potential,especially their mesoderm lineage potential. Cyclin B1/B2 expression was found to parallel that of REX1. REX1 positively regulates the transcriptional activity of cyclin B1/B2 through binding to their promoters. REX1 induces the phosphorylation of DRP1 at Ser616 by cyclin B/CDK1,which leads to mitochondrial fission and appears to be important for meeting the high-energy demands of highly glycolytic hPSCs. During reprogramming to pluripotency by defined factors (OCT4,SOX2,KLF4,and c-MYC),the reprogramming kinetics and efficiency are markedly improved by adding REX1 or replacing KLF4 with REX1. These improvements are achieved by lowering reprogramming barriers (growth arrest and apoptosis),by enhancing mitochondrial fission,and by conversion to glycolytic metabolism,dependent on the cyclin B1/B2-DRP1 pathway. Our results show that a novel pluripotency regulator,REX1,is essential for pluripotency and reprogramming.
View Publication
Reference
Liu C et al. (SEP 2013)
Biochemical and Biophysical Research Communications 439 1 154--159
Neural differentiation of human embryonic stem cells as an in vitro tool for the study of the expression patterns of the neuronal cytoskeleton during neurogenesis
The neural differentiation of human embryonic stem cells (ESCs) is a potential tool for elucidating the key mechanisms involved in human neurogenesis. Nestin and ??-III-tubulin,which are cytoskeleton proteins,are marker proteins of neural stem cells (NSCs) and neurons,respectively. However,the expression patterns of nestin and ??-III-tubulin in neural derivatives from human ESCs remain unclear. In this study,we found that neural progenitor cells (NPCs) derived from H9 cells express high levels of nestin and musashi-1. In contrast,??-III-tubulin was weakly expressed in a few NPCs. Moreover,in these cells,nestin formed filament networks,whereas ??-III-tubulin was distributed randomly as small particles. As the differentiation proceeded,the nestin filament networks and the ??-III-tubulin particles were found in both the cell soma and the cellular processes. Moreover,the colocalization of nestin and ??-III-tubulin was found mainly in the cell processes and neurite-like structures and not in the cell soma. These results may aid our understanding of the expression patterns of nestin and ??-III-tubulin during the neural differentiation of H9 cells. ?? 2013 Elsevier Inc.
View Publication
Reference
Davis RP et al. (JUL 2013)
Differentiation 86 1–2 30--37
Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system
Transposon gene delivery systems offer an alternative,non-viral-based approach to generate induced pluripotent stem cells (iPSCs). Here we used the Sleeping Beauty (SB) transposon to generate four human iPSC lines from foetal fibroblasts. In contrast to other gene delivery systems,the SB transposon does not exhibit an integration bias towards particular genetic elements,thereby reducing the risk of insertional mutagenesis. Furthermore,unlike the alternative transposon piggyBac,SB has no SB-like elements within the human genome,minimising the possibility of mobilising endogenous transposon elements. All iPSC lines exhibited the expected characteristics of pluripotent human cells,including the ability to differentiate to derivatives of all three germ layers in vitro. Re-expression of the SB transposase in the iPSCs after reprogramming resulted in the mobilisation of some of the transposons. These results indicate that the SB transposon system is a useful addition to methods for generating human iPSCs,both for basic and applied biomedical research,and in the context of future therapeutic application. textcopyright 2013 International Society of Differentiation.
View Publication
Reference
Ng S-YY et al. (AUG 2013)
Molecular Cell 51 3 349--359
The Long Noncoding RNA RMST Interacts with SOX2 to Regulate Neurogenesis
Long noncoding RNAs (lncRNAs) are abundant in the mammalian transcriptome,and many are specifically expressed in the brain. We have identified a group of lncRNAs,including rhabdomyosarcoma 2-associated transcript (RMST),which are indispensable for neurogenesis. Here,we provide mechanistic insight into the role of human RMST in modulating neurogenesis. RMST expression is specific to the brain,regulated by the transcriptional repressor REST,and increases during neuronal differentiation,indicating a role in neurogenesis. RMST physically interacts with SOX2,a transcription factor known to regulate neural fate. RMST and SOX2 coregulate a large pool of downstream genes implicated in neurogenesis. Through RNA interference and genome-wide SOX2 binding studies,we found that RMST is required for the binding of SOX2 to promoter regions of neurogenic transcription factors. These results establish the role of RMST as a transcriptional coregulator of SOX2 and a key player in the regulation of neural stem cell fate. ?? 2013 Elsevier Inc.
View Publication
Reference
Sun N and Zhao H (MAY 2014)
Biotechnology and Bioengineering 111 5 1048--53
Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs.
Sickle cell disease (SCD) is the most common human genetic disease which is caused by a single mutation of human β-globin (HBB) gene. The lack of long-term treatment makes the development of reliable cell and gene therapies highly desirable. Disease-specific patient-derived human induced pluripotent stem cells (hiPSCs) have great potential for developing novel cell and gene therapies. With the disease-causing mutations corrected in situ,patient-derived hiPSCs can restore normal cell functions and serve as a renewable autologous cell source for the treatment of genetic disorders. Here we successfully utilized transcription activator-like effector nucleases (TALENs),a recently emerged novel genome editing tool,to correct the SCD mutation in patient-derived hiPSCs. The TALENs we have engineered are highly specific and generate minimal off-target effects. In combination with piggyBac transposon,TALEN-mediated gene targeting leaves no residual ectopic sequences at the site of correction and the corrected hiPSCs retain full pluripotency and a normal karyotype. Our study demonstrates an important first step of using TALENs for the treatment of genetic diseases such as SCD,which represents a significant advance toward hiPSC-based cell and gene therapies.
View Publication
Reference
Drury-Stewart D et al. (AUG 2013)
Stem cell research & therapy 4 4 93
Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice.
INTRODUCTION: Ischemic stroke is a leading cause of death and disability,but treatment options are severely limited. Cell therapy offers an attractive strategy for regenerating lost tissues and enhancing the endogenous healing process. In this study,we investigated the use of human embryonic stem cell-derived neural precursors as a cell therapy in a murine stroke model.backslashnbackslashnMETHODS: Neural precursors were derived from human embryonic stem cells by using a fully adherent SMAD inhibition protocol employing small molecules. The efficiency of neural induction and the ability of these cells to further differentiate into neurons were assessed by using immunocytochemistry. Whole-cell patch-clamp recording was used to demonstrate the electrophysiological activity of human embryonic stem cell-derived neurons. Neural precursors were transplanted into the core and penumbra regions of a focal ischemic stroke in the barrel cortex of mice. Animals received injections of bromodeoxyuridine to track regeneration. Neural differentiation of the transplanted cells and regenerative markers were measured by using immunohistochemistry. The adhesive removal test was used to determine functional improvement after stroke and intervention.backslashnbackslashnRESULTS: After 11 days of neural induction by using the small-molecule protocol,over 95% of human embryonic stem-derived cells expressed at least one neural marker. Further in vitro differentiation yielded cells that stained for mature neuronal markers and exhibited high-amplitude,repetitive action potentials in response to depolarization. Neuronal differentiation also occurred after transplantation into the ischemic cortex. A greater level of bromodeoxyuridine co-localization with neurons was observed in the penumbra region of animals receiving cell transplantation. Transplantation also improved sensory recovery in transplant animals over that in control animals.backslashnbackslashnCONCLUSIONS: Human embryonic stem cell-derived neural precursors derived by using a highly efficient small-molecule SMAD inhibition protocol can differentiate into electrophysiologically functional neurons in vitro. These cells also differentiate into neurons in vivo,enhance regenerative activities,and improve sensory recovery after ischemic stroke.
View Publication
Reference
Tadeu AMB and Horsley V (SEP 2013)
Development (Cambridge,England) 140 18 3777--86
Notch signaling represses p63 expression in the developing surface ectoderm.
The development of the mature epidermis requires a coordinated sequence of signaling events and transcriptional changes to specify surface ectodermal progenitor cells to the keratinocyte lineage. The initial events that specify epidermal keratinocytes from ectodermal progenitor cells are not well understood. Here,we use both developing mouse embryos and human embryonic stem cells (hESCs) to explore the mechanisms that direct keratinocyte fate from ectodermal progenitor cells. We show that both hESCs and murine embryos express p63 before keratin 14. Furthermore,we find that Notch signaling is activated before p63 expression in ectodermal progenitor cells. Inhibition of Notch signaling pharmacologically or genetically reveals a negative regulatory role for Notch signaling in p63 expression during ectodermal specification in hESCs or mouse embryos,respectively. Taken together,these data reveal a role for Notch signaling in the molecular control of ectodermal progenitor cell specification to the epidermal keratinocyte lineage.
View Publication
Reference
Liu P et al. (JUL 2013)
PLoS ONE 8 7 e69617
Low Immunogenicity of Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Derived from Less Immunogenic Somatic Cells
The groundbreaking discovery of induced pluripotent stem cells (iPS cells) provides a new source for cell therapy. However,whether the iPS derived functional lineages from different cell origins have different immunogenicity remains unknown. It had been known that the cells isolated from extra-embryonic tissues,such as umbilical cord mesenchymal cells (UMCs),are less immunogenic than other adult lineages such as skin fibroblasts (SFs). In this report,we differentiated iPS cells from human UMCs and SFs into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with allologous peripheral blood mononuclear cells (PBMCs),we showed that UMCs were indeed less immunogenic than skin cells to simulate proliferation of PBMCs. Surprisingly,we found that the NPCs differentiated from UMC-iPS cells retained low immunogenicity as the parental UMCs based on the PBMC proliferation assay. In cytotoxic expression assay,reactions in most kinds of immune effector cells showed more perforin and granzyme B expression with SF-NPCs stimulation than that with UMC-NPCs stimulation in PBMC co-culture system,in T cell co-culture system as well. Furthermore,through whole genome expression microarray analysis,we showed that over 70 immune genes,including all members of HLA-I,were expressed at lower levels in NPCs derived from UMC-iPS cells than that from SF-iPS cells. Our results demonstrated a phenomenon that the low immunogenicity of the less immunogenic cells could be retained after cell reprogramming and further differentiation,thus provide a new concept to generate functional lineages with lower immunogenicity for regenerative medicine.
View Publication
Reference
Lee M-YM-O et al. (AUG 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 35 E3281--90
Inhibition of pluripotent stem cell-derived teratoma formation by small molecules.
The future of safe cell-based therapy rests on overcoming teratoma/tumor formation,in particular when using human pluripotent stem cells (hPSCs),such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Because the presence of a few remaining undifferentiated hPSCs can cause undesirable teratomas after transplantation,complete removal of these cells with no/minimal damage to differentiated cells is a prerequisite for clinical application of hPSC-based therapy. Having identified a unique hESC signature of pro- and antiapoptotic gene expression profile,we hypothesized that targeting hPSC-specific antiapoptotic factor(s) (i.e.,survivin or Bcl10) represents an efficient strategy to selectively eliminate pluripotent cells with teratoma potential. Here we report the successful identification of small molecules that can effectively inhibit these antiapoptotic factors,leading to selective and efficient removal of pluripotent stem cells through apoptotic cell death. In particular,a single treatment of hESC-derived mixed population with chemical inhibitors of survivin (e.g.,quercetin or YM155) induced selective and complete cell death of undifferentiated hPSCs. In contrast,differentiated cell types (e.g.,dopamine neurons and smooth-muscle cells) derived from hPSCs survived well and maintained their functionality. We found that quercetin-induced selective cell death is caused by mitochondrial accumulation of p53 and is sufficient to prevent teratoma formation after transplantation of hESC- or hiPSC-derived cells. Taken together,these results provide the proof of concept" that small-molecule targeting of hPSC-specific antiapoptotic pathway(s) is a viable strategy to prevent tumor formation by selectively eliminating remaining undifferentiated pluripotent cells for safe hPSC-based therapy."
View Publication
Reference
Kearns NA et al. (NOV 2013)
Stem Cell Research 11 3 1003--1012
Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules
Anterior foregut endoderm (AFE) gives rise to therapeutically relevant cell types in tissues such as the esophagus,salivary glands,lung,thymus,parathyroid and thyroid. Despite its importance,reports describing the generation of AFE from pluripotent stem cells (PSCs) by directed differentiation have mainly focused on the Nkx2.1(+) lung and thyroid lineages. Here,we describe a novel protocol to derive a subdomain of AFE,identified by expression of Pax9,from PSCs using small molecules and defined media conditions. We generated a reporter PSC line for isolation and characterization of Pax9(+) AFE cells,which when transplanted in vivo,can form several distinct complex AFE-derived epithelia,including mucosal glands and stratified squamous epithelium. Finally,we show that the directed differentiation protocol can be used to generate AFE from human PSCs. Thus,this work both broadens the range of PSC-derived AFE tissues and creates a platform enabling the study of AFE disorders.
View Publication