Miyazaki T et al. ( 2012)
Nature communications 3 1236
Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells.
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have the potential to provide an infinite source of tissues for regenerative medicine. Although defined xeno-free media have been developed,culture conditions for reliable propagation of hESCs still require considerable improvement. Here we show that recombinant E8 fragments of laminin isoforms (LM-E8s),which are the minimum fragments conferring integrin-binding activity,promote greater adhesion of hESCs and hiPSCs than do Matrigel and intact laminin isoforms. Furthermore,LM-E8s sustain long-term self-renewal of hESCs and hiPSCs in defined xeno-free media with dissociated cell passaging. We successfully maintained three hESC and two hiPSC lines on LM-E8s in three defined media for 10 passages. hESCs maintained high level expression of pluripotency markers,had a normal karyotype after 30 passages and could differentiate into all three germ layers. This culture system allows robust proliferation of hESCs and hiPSCs for therapeutic applications.
View Publication
Reference
Chan DN et al. ( 2012)
PLoS ONE 7 11 e50432
Ptk7 Marks the First Human Developmental EMT In Vitro
Epithelial to mesenchymal transitions (EMTs) are thought to be essential to generate diversity of tissues during early fetal development,but these events are essentially impossible to study at the molecular level in vivo in humans. The first EMT event that has been described morphologically in human development occurs just prior to generation of the primitive streak. Because human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) are thought to most closely resemble cells found in epiblast-stage embryos prior to formation of the primitive streak,we sought to determine whether this first human EMT could be modeled in vitro with pluripotent stem cells. The data presented here suggest that generating embryoid bodies from hESCs or hiPSCs drives a procession of EMT events that can be observed within 24-48 hours after EB generation. These structures possess the typical hallmarks of developmental EMTs,and portions also display evidence of primitive streak and mesendoderm. We identify PTK7 as a novel marker of this EMT population,which can also be used to purify these cells for subsequent analyses and identification of novel markers of human development. Gene expression analysis indicated an upregulation of EMT markers and ECM proteins in the PTK7+ population. We also find that cells that undergo this developmental EMT retain developmental plasticity as sorting,dissociation and re-plating reestablishes an epithelial phenotype.
View Publication
Reference
D'Aiuto L et al. ( 2012)
PLoS ONE 7 11 e49700
Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells
Human cytomegalovirus (HCMV) infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages,necessary to understand the species specific pathogenic effects of HCMV,has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS) cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells,iPS-derived neural stem cells (NSCs),neural progenitor cells (NPCs) and neurons suggests that (i) iPS cells are not permissive to HCMV infection,i.e.,they do not permit a full viral replication cycle; (ii) Neural stem cells have impaired differentiation when infected by HCMV; (iii) NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv) most iPS-derived neurons are not permissive to HCMV infection; and (v) infected neurons have impaired calcium influx in response to glutamate.
View Publication
Reference
Myers FB et al. (JAN 2013)
Lab on a chip 13 2 220--8
Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters.
Stem cell therapies hold great promise for repairing tissues damaged due to disease or injury. However,a major obstacle facing this field is the difficulty in identifying cells of a desired phenotype from the heterogeneous population that arises during stem cell differentiation. Conventional fluorescence flow cytometry and magnetic cell purification require exogenous labeling of cell surface markers which can interfere with the performance of the cells of interest. Here,we describe a non-genetic,label-free cell cytometry method based on electrophysiological response to stimulus. As many of the cell types relevant for regenerative medicine are electrically-excitable (e.g. cardiomyocytes,neurons,smooth muscle cells),this technology is well-suited for identifying cells from heterogeneous stem cell progeny without the risk and expense associated with molecular labeling or genetic modification. Our label-free cell cytometer is capable of distinguishing clusters of undifferentiated human induced pluripotent stem cells (iPSC) from iPSC-derived cardiomyocyte (iPSC-CM) clusters. The system utilizes a microfluidic device with integrated electrodes for both electrical stimulation and recording of extracellular field potential (FP) signals from suspended cells in flow. The unique electrode configuration provides excellent rejection of field stimulus artifact while enabling sensitive detection of FPs with a noise floor of 2 $$V(rms). Cells are self-aligned to the recording electrodes via hydrodynamic flow focusing. Based on automated analysis of these extracellular signals,the system distinguishes cardiomyocytes from non-cardiomyocytes. This is an entirely new approach to cell cytometry,in which a cell's functionality is assessed rather than its expression profile or physical characteristics.
View Publication
Reference
Kurian L et al. (JAN 2013)
Nature methods 10 1 77--83
Conversion of human fibroblasts to angioblast-like progenitor cells.
Lineage conversion of one somatic cell type to another is an attractive approach for generating specific human cell types. Lineage conversion can be direct,in the absence of proliferation and multipotent progenitor generation,or indirect,by the generation of expandable multipotent progenitor states. We report the development of a reprogramming methodology in which cells transition through a plastic intermediate state,induced by brief exposure to reprogramming factors,followed by differentiation. We use this approach to convert human fibroblasts to mesodermal progenitor cells,including by non-integrative approaches. These progenitor cells demonstrated bipotent differentiation potential and could generate endothelial and smooth muscle lineages. Differentiated endothelial cells exhibited neo-angiogenesis and anastomosis in vivo. This methodology for indirect lineage conversion to angioblast-like cells adds to the armamentarium of reprogramming approaches aimed at the study and treatment of ischemic pathologies.
View Publication
Reference
McBrian MA et al. (JAN 2013)
Molecular cell 49 2 310--321
Histone Acetylation Regulates Intracellular pH
Differences in global levels of histone acetylation occur in normal and cancer cells,although the reason why cells regulate these levels has been unclear. Here we demonstrate a role for histone acetylation in regulating intracellular pH (pH(i)). As pH(i) decreases,histones are globally deacetylated by histone deacetylases (HDACs),and the released acetate anions are coexported with protons out of the cell by monocarboxylate transporters (MCTs),preventing further reductions in pH(i). Conversely,global histone acetylation increases as pH(i) rises,such as when resting cells are induced to proliferate. Inhibition of HDACs or MCTs decreases acetate export and lowers pH(i),particularly compromising pH(i) maintenance in acidic environments. Global deacetylation at low pH is reflected at a genomic level by decreased abundance and extensive redistribution of acetylation throughout the genome. Thus,acetylation of chromatin functions as a rheostat to regulate pH(i) with important implications for mechanism of action and therapeutic use of HDAC inhibitors.
View Publication
Reference
Chen YS et al. (FEB 2012)
Stem cells translational medicine 1 2 83--95
Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells.
The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs,heterogeneity,and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs,but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques,such as coculture,physical manipulation,sorting,or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First,epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days,iPSCs showed upregulation of mesodermal genes (MSX2,NCAM,HOXA2) and downregulation of pluripotency genes (OCT4,LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes,reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype,expressed high levels of vimentin and N-cadherin,and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs,whereas adipogenic differentiation was limited,as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture,providing a robust,clinically applicable,and efficient system for generating MSCs from human iPSCs.
View Publication
Reference
Wiedemann A et al. (DEC 2012)
Cellular reprogramming 14 6 485--496
Induced pluripotent stem cells generated from adult bone marrow-derived cells of the nonhuman primate (Callithrix jacchus) using a novel quad-cistronic and excisable lentiviral vector.
Regenerative medicine is in need of solid,large animal models as a link between rodents and humans to evaluate the functionality,immunogenicity,and clinical safety of stem cell-derived cell types. The common marmoset (Callithrix jacchus) is an excellent large animal model,genetically close to humans and readily used worldwide in clinical research. Until now,only two groups showed the generation of induced pluripotent stem cells (iPSCs) from the common marmoset using integrating retroviral vectors. Therefore,we reprogrammed bone marrow-derived mesenchymal cells (MSCs) of adult marmosets in the presence of TAV,SB431542,PD0325901,and ascorbic acid via a novel,excisable lentiviral spleen focus-forming virus (SFFV)-driven quad-cistronic vector system (OCT3/4,KLF4,SOX2,C-MYC). Endogenous pluripotency markers like OCT3/4,KLF4,SOX2,C-MYC,LIN28,NANOG,and strong alkaline phosphatase signals were detected. Exogenous genes were silenced and additionally the cassette was removed with a retroviral Gag precursor system. The cell line could be cultured in absence of leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) and could be successfully differentiated into embryoid bodies and teratomas with presence of all three germ layers. Directed differentiation generated neural progenitors,megakaryocytes,adipocytes,chondrocytes,and osteogenic cells. Thus,all criteria for fully reprogrammed bone marrow-MSCs of a nonhuman primate with a genetically sophisticated construct could be demonstrated. These cells will be a promising tool for future autologous transplantations.
View Publication
Reference
Lian X et al. (MAR 2013)
Stem Cells 31 3 447--457
Insulin inhibits cardiac mesoderm, not mesendoderm, formation during cardiac differentiation of human pluripotent stem cells and modulation of canonical wnt signaling can rescue this inhibition
The study of the regulatory signaling hierarchies of human heart development is limited by a lack of model systems that can reproduce the precise developmental events that occur during human embryogenesis. The advent of human pluripotent stem cell (hPSC) technology and robust cardiac differentiation methods affords a unique opportunity to monitor the full course of cardiac induction in vitro. Here,we show that stage-specific activation of insulin signaling strongly inhibited cardiac differentiation during a monolayer-based differentiation protocol that used transforming growth factor β superfamily ligands to generate cardiomyocytes. However,insulin did not repress cardiomyocyte differentiation in a defined protocol that used small molecule regulators of canonical Wnt signaling. By examining the context of insulin inhibition of cardiomyocyte differentiation,we determined that the inhibitory effects by insulin required Wnt/β-catenin signaling and that the cardiomyocyte differentiation defect resulting from insulin exposure was rescued by inhibition of Wnt/β-catenin during the cardiac mesoderm (Nkx2.5+) stage. Thus,insulin and Wnt/β-catenin signaling pathways,as a network,coordinate to influence hPSC differentiation to cardiomyocytes,with the Wnt/β-catenin pathway dominant to the insulin pathway. Our study contributes to the understanding of the regulatory hierarchies of human cardiomyocyte differentiation and has implications for modeling human heart development.
View Publication
Reference
Thatava T et al. (JAN 2013)
Molecular therapy : the journal of the American Society of Gene Therapy 21 1 228--239
Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells.
Nuclear reprogramming of adult somatic tissue enables embryo-independent generation of autologous,patient-specific induced pluripotent stem (iPS) cells. Exploiting this emergent regenerative platform for individualized medicine applications requires the establishment of bioequivalence criteria across derived pluripotent lines and lineage-specified derivatives. Here,from individual patients with type 1 diabetes (T1D) multiple human iPS clones were produced and prospectively screened using a battery of developmental markers to assess respective differentiation propensity and proficiency in yielding functional insulin (INS)-producing progeny. Global gene expression profiles,pluripotency expression patterns,and the capacity to differentiate into SOX17- and FOXA2-positive definitive endoderm (DE)-like cells were comparable among individual iPS clones. However,notable intrapatient variation was evident upon further guided differentiation into HNF4α- and HNF1β-expressing primitive gut tube,and INS- and glucagon (GCG)-expressing islet-like cells. Differential dynamics of pluripotency-associated genes and pancreatic lineage-specifying genes underlined clonal variance. Successful generation of glucose-responsive INS-producing cells required silencing of stemness programs as well as the induction of stage-specific pancreatic transcription factors. Thus,comprehensive fingerprinting of individual clones is mandatory to secure homogenous pools amenable for diagnostic and therapeutic applications of iPS cells from patients with T1D.
View Publication
Reference
Shevde NK and Mael AA ( 2013)
Methods Mol Biol 946 535--546
Techniques in embryoid body formation from human pluripotent stem cells
Embryoid bodies (EBs) can be generated by culturing human pluripotent stem cells in ultra-low attachment culture vessels,under conditions that are adverse to pluripotency and proliferation. EBs generated in suspension cultures are capable of differentiating into cells of the ectoderm,mesoderm,and endoderm. In this chapter,we describe techniques for generation of EBs from human pluripotent stem cells. Once formed,the EBs can then be dissociated using specific enzymes to acquire a single cell population that has the potential to differentiate into cells of all three germ layers. This population can then be cultured in specialized conditions to obtain progenitor cells of specific lineages. Pure populations of progenitor cells generated on a large scale basis can be used for research,drug discovery/development,and cellular transplantation therapy.
View Publication
Formation of embryoid bodies from human pluripotent stem cells using AggreWell™ plates.
Many human embryonic stem (hES) and induced pluripotent stem (hiPS) cell differentiation protocols begin with the formation of three-dimensional aggregates of cells called embryoid bodies (EBs). Traditional EB formation methods result in a heterogeneous population of EB sizes and shapes,which then undergo heterogeneous differentiation efficiencies. AggreWell(TM)400 and AggreWell(TM)800 use the spin-EB method to force the aggregation of a defined number of cells,thereby controlling EB size and generating a population of uniform EBs. Moreover,the dense array of microwells on the bottom surface of AggreWell(TM)400 provide for the rapid and simple production of thousands of EBs at a time.
View Publication