Keskin DB et al. (FEB 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 9 3378--83
TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells.
During pregnancy the uterine decidua is populated by large numbers of natural killer (NK) cells with a phenotype CD56(superbright)CD16(-)CD9(+)KIR(+) distinct from both subsets of peripheral blood NK cells. Culture of highly purified CD16(+)CD9(-) peripheral blood NK cells in medium containing TGFbeta1 resulted in a transition to CD16(-)CD9(+) NK cells resembling decidual NK cells. Decidual stromal cells,when isolated and cultured in vitro,were found to produce TGFbeta1. Incubation of peripheral blood NK cells with conditioned medium from decidual stromal cells mirrored the effects of TGFbeta1. Similar changes may occur upon NK cell entry into the decidua or other tissues expressing substantial TGFbeta. In addition,Lin(-)CD34(+)CD45(+) hematopoietic stem/progenitor cells could be isolated from decidual tissue. These progenitors also produced NK cells when cultured in conditioned medium from decidual stromal cells supplemented with IL-15 and stem cell factor.
View Publication
Reference
Miething C et al. (MAR 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 11 4594--9
Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment.
The kinase inhibitor imatinib mesylate targeting the oncoprotein Bcr-Abl has revolutionized the treatment of chronic myeloid leukemia (CML). However,even though imatinib successfully controls the leukemia in chronic phase,it seems not to be able to cure the disease,potentially necessitating lifelong treatment with the inhibitor under constant risk of relapse. On a molecular level,the cause of disease persistence is not well understood. Initial studies implied that innate features of primitive progenitor cancer stem cells may be responsible for the phenomenon. Here,we describe an assay using retroviral insertional mutagenesis (RIM) to identify genes contributing to disease persistence in vivo. We transplanted mice with bone marrow cells retrovirally infected with the Bcr-Abl oncogene and subsequently treated the animals with imatinib to select for leukemic cells in which the proviral integration had affected genes modulating the imatinib response. Southern blot analysis demonstrated clonal outgrowth of cells carrying similar integration sites. Candidate genes located near the proviral insertion sites were identified,among them the transcription factor RUNX3. Proviral integration near the RUNX3 promoter induced RUNX3 expression,and Bcr-Abl-positive cell lines with stable or inducible expression of RUNX1 or RUNX3 were protected from imatinib-induced apoptosis. Furthermore,imatinib treatment selected for RUNX1-expressing cells in vitro and in vivo after infection of primary bone marrow cells with Bcr-Abl and RUNX1. Our results demonstrate the utility of RIM for probing molecular modulators of targeted therapies and suggest a role for members of the RUNX transcription factor family in disease persistence in CML patients.
View Publication
Reference
DiMascio L et al. (MAR 2007)
The Journal of Immunology 178 6 3511--3520
Identification of Adiponectin as a Novel Hemopoietic Stem Cell Growth Factor
The hemopoietic microenvironment consists of a diverse repertoire of cells capable of providing signals that influence hemopoietic stem cell function. Although the role of osteoblasts and vascular endothelial cells has recently been characterized,the function of the most abundant cell type in the bone marrow,the adipocyte,is less defined. Given the emergence of a growing number of adipokines,it is possible that these factors may also play a role in regulating hematopoiesis. Here,we investigated the role of adiponectin,a secreted molecule derived from adipocytes,in hemopoietic stem cell (HSC) function. We show that adiponectin is expressed by components of the HSC niche and its receptors AdipoR1 and AdipoR2 are expressed by HSCs. At a functional level,adiponectin influences HSCs by increasing their proliferation,while retaining the cells in a functionally immature state as determined by in vitro and in vivo assays. We also demonstrate that adiponectin signaling is required for optimal HSC proliferation both in vitro and in long term hemopoietic reconstitution in vivo. Finally we show that adiponectin stimulation activates p38 MAPK,and that inhibition of this pathway abrogates adiponectin's proliferative effect on HSCs. These studies collectively identify adiponectin as a novel regulator of HSC function and suggest that it acts through a p38 dependent pathway.
View Publication
Reference
Bruserud &O et al. (MAR 2007)
Haematologica 92 3 332--41
Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells.
BACKGROUND AND OBJECTIVES: Chemokines are soluble mediators involved in angiogenesis,cellular growth control and immunomodulation. In the present study we investigated the effects of various chemokines on proliferation of acute myelogenous leukemia (AML) cells and constitutive chemokine release by primary AML cells. DESIGN AND METHODS: Native human AML cells derived from 68 consecutive patients were cultured in vitro. We investigated AML cell proliferation (3H-thymidine incorporation,colony formation),chemokine receptor expression,constitutive chemokine release and chemotaxis of normal peripheral blood mononuclear cells. RESULTS: Exogenous chemokines usually did not have any effect on AML blast proliferation in the absence of hematopoietic growth factors,but when investigating growth factor-dependent (interleukin 3 + granulocyte-macrophage colony-stimulating factor + stem cell factor) proliferation in suspension cultures the following patient subsets were identified: (i) patients whose cells showed chemokine-induced growth enhancement (8 patients); (ii) divergent effects on proliferation (15 patients); and (iii) no effect (most patients). These patient subsets did not differ in chemokine receptor expression,but,compared to CD34- AML cells,CD34+ cells showed higher expression of several receptors. Chemokines also increased the proliferation of clonogenic AML cells from the first subset of patients. Furthermore,a broad constitutive chemokine release profile was detected for most patients,and the following chemokine clusters could be identified: CCL2-4/CXCL1/8,CCL5/CXCL9-11 (possibly also CCL23) and CCL13/17/22/24/CXCL5 (possibly also CXCL6). Only the CCL2-4/CXCL1/8 cluster showed significant correlations between corresponding mRNA levels and NFkB levels/activation. The chemotaxis of normal immunocompetent cells for patients without constitutive chemokine release was observed to be decreased. INTERPRETATION AND CONCLUSIONS: Differences in chemokine responsiveness as well as chemokine release contribute to patient heterogeneity in AML. Patients with AML can be classified into distinct subsets according to their chemokine responsiveness and chemokine release profile.
View Publication
Reference
Hu Y-L et al. (JUN 2007)
Blood 109 11 4732--8
Evidence that the Pim1 kinase gene is a direct target of HOXA9.
The HOXA9 homeoprotein exerts dramatic effects in hematopoiesis. Enforced expression of HOXA9 enhances proliferation of primitive blood cells,expands hematopoietic stem cells (HSCs),and leads to myeloid leukemia. Conversely,loss of HOXA9 inhibits proliferation and impairs HSC function. The pathways by which HOXA9 acts are largely unknown,and although HOXA9 is a transcription factor,few direct target genes have been identified. Our previous study suggested that HOXA9 positively regulates Pim1,an oncogenic kinase. The hematologic phenotypes of Hoxa9- and Pim1-deficient animals are strikingly similar. Here we show that HOXA9 protein binds to the Pim1 promoter and induces Pim1 mRNA and protein in hematopoietic cells. Pim1 protein is diminished in Hoxa9(-/-) cells,and Hoxa9 and Pim1 mRNA levels track together in early hematopoietic compartments. Induction of Pim1 protein by HOXA9 increases the phosphorylation and inactivation of the proapoptotic BAD protein,a target of Pim1. Hoxa9(-/-) cells show increased apoptosis and decreased proliferation,defects that are ameliorated by reintroduction of Pim1. Thus Pim1 appears to be a direct transcriptional target of HOXA9 and a mediator of its antiapoptotic and proproliferative effects in early cells. Since HOXA9 is frequently up-regulated in acute myeloid leukemia,Pim1 may be a therapeutic target in human disease.
View Publication
Reference
Eckardt S et al. (FEB 2007)
Genes & development 21 4 409--19
Hematopoietic reconstitution with androgenetic and gynogenetic stem cells.
Parthenogenetic embryonic stem (ES) cells with two oocyte-derived genomes (uniparental) have been proposed as a source of autologous tissue for transplantation. The therapeutic applicability of any uniparental cell type is uncertain due to the consequences of genomic imprinting that in mammalian uniparental tissues causes unbalanced expression of imprinted genes. We transplanted uniparental fetal liver cells into lethally irradiated adult mice to test their capacity to replace adult hematopoietic tissue. Both maternal (gynogenetic) and paternal (androgenetic) derived cells conveyed long-term,multilineage reconstitution of hematopoiesis in recipients,with no associated pathologies. We also establish that uniparental ES cells can differentiate into transplantable hematopoietic progenitors in vitro that contribute to long-term hematopoiesis in recipients. Hematopoietic tissue in recipients maintained fidelity of parent-of-origin methylation marks at the Igf2/H19 locus; however,variability occurred in the maintenance of parental-specific methylation marks at other loci. In summary,despite genomic imprinting and its consequences on development that are particularly evident in the androgenetic phenotype,uniparental cells of both parental origins can form adult-transplantable stem cells and can repopulate an adult organ.
View Publication
Reference
Cheung YY et al. (MAR 2007)
The Journal of clinical investigation 117 3 784--93
Impaired neutrophil activity and increased susceptibility to bacterial infection in mice lacking glucose-6-phosphatase-beta.
Neutropenia and neutrophil dysfunction are common in many diseases,although their etiology is often unclear. Previous views held that there was a single ER enzyme,glucose-6-phosphatase-alpha (G6Pase-alpha),whose activity--limited to the liver,kidney,and intestine--was solely responsible for the final stages of gluconeogenesis and glycogenolysis,in which glucose-6-phosphate (G6P) is hydrolyzed to glucose for release to the blood. Recently,we characterized a second G6Pase activity,that of G6Pase-beta (also known as G6PC),which is also capable of hydrolyzing G6P to glucose but is ubiquitously expressed and not implicated in interprandial blood glucose homeostasis. We now report that the absence of G6Pase-beta led to neutropenia; defects in neutrophil respiratory burst,chemotaxis,and calcium flux; and increased susceptibility to bacterial infection. Consistent with this,G6Pase-beta-deficient (G6pc3-/-) mice with experimental peritonitis exhibited increased expression of the glucose-regulated proteins upregulated during ER stress in their neutrophils and bone marrow,and the G6pc3-/- neutrophils exhibited an enhanced rate of apoptosis. Our results define a molecular pathway to neutropenia and neutrophil dysfunction of previously unknown etiology,providing a potential model for the treatment of these conditions.
View Publication
Reference
Kubota Y et al. (MAR 2007)
Journal of immunology (Baltimore,Md. : 1950) 178 5 2923--31
Mcl-1 depletion in apoptosis elicited by ionizing radiation in peritoneal resident macrophages of C3H mice.
Remarkably,apoptosis was induced by exposing peritoneal resident macrophages (PRM) of C3H mice,but not other strains of mice,to ionizing radiation. The molecular mechanism of this strain-specific apoptosis in PRM was studied. The apoptosis elicited in C3H mouse PRM 4 h after exposure was effectively blocked by proteasome inhibitors. Irradiation-induced disruption of mitochondrial transmembrane potential and the release of cytochrome c into the cytosol were also suppressed by a proteasome inhibitor but not by a caspase inhibitor. To determine whether the apoptosis occurred due to a depletion of antiapoptotic proteins,Bcl-2 family proteins were examined. Irradiation markedly decreased the level of Mcl-1,but not Bcl-2,Bcl-X(L),Bax,A1,or cIAP1. Mcl-1's depletion was suppressed by a proteasome inhibitor but not by a caspase inhibitor. The amount of Mcl-1 was well correlated with the rate of apoptosis in C3H mouse PRM exposed to irradiation and not affected by irradiation in radioresistant B6 mouse PRM. Irradiation increased rather than decreased the Mcl-1 mRNA expression in C3H mouse PRM. On the other hand,Mcl-1 protein synthesis was markedly suppressed by irradiation. Global protein synthesis was also suppressed by irradiation in C3H mouse PRM but not in B6 mouse PRM. The down-regulation of Mcl-1 expression with Mcl-1-specific small interfering RNA or antisense oligonucleotide significantly induced apoptosis in both C3H and B6 mouse PRM without irradiation. It was concluded that the apoptosis elicited in C3H mouse PRM by ionizing radiation was attributable to the depletion of Mcl-1 through radiation-induced arrest of global protein synthesis.
View Publication
Reference
Penicka M et al. (JUL 2007)
Heart (British Cardiac Society) 93 7 837--41
One-day kinetics of myocardial engraftment after intracoronary injection of bone marrow mononuclear cells in patients with acute and chronic myocardial infarction.
OBJECTIVE: To investigate the kinetics of myocardial engraftment of bone marrow-derived mononuclear cells (BMNCs) after intracoronary injection using 99mTc-d,l-hexamethylpropylene amine oxime (99mTc-HMPAO) nuclear imaging in patients with acute and chronic anterior myocardial infarction. DESIGN: Nuclear imaging-derived tracking of BMNCs at 2 and 20 h after injection in the left anterior descending (LAD) coronary artery. SETTING: Academical cardiocentre. PATIENTS: Five patients with acute (mean (SD) age 58 (11) years; ejection fraction range 33-45%) and five patients with chronic (mean (SD) age 50 (6) years; ejection fraction range 28-34%) anterior myocardial infarction. INTERVENTIONS: A total of 24.2 x 10(8)-57.0 x 10(8) BMNCs (20% labelled with 700-1000 MBq 99mTc-HMPAO) were injected in the LAD coronary artery. RESULTS: At 2 h after BMNC injection,myocardial activity was observed in all patients with acute (range 1.31-5.10%) and in all but one patient with chronic infarction (range 1.10-3.0%). At 20 h,myocardial engraftment was noted only in three patients with acute myocardial infarction,whereas no myocardial activity was noted in any patient with chronic infarction. CONCLUSIONS: Engraftment of BMNCs shows dynamic changes within the first 20 h after intracoronary injection. Persistent myocardial engraftment was noted only in a subset of patients with acute myocardial infarction.
View Publication
Reference
Seeger FH et al. (MAR 2007)
European heart journal 28 6 766--72
Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction.
AIM: The recently published REPAIR-AMI and ASTAMI trial showed differences in contractile recovery of left ventricular function after infusion of bone marrow-derived cells in acute myocardial infarction. Since the trials used different protocols for cell isolation and storage (REPAIR-AMI: Ficoll,storage in X-vivo 10 medium plus serum; ASTAMI: Lymphoprep,storage in NaCl plus plasma),we compared the functional activity of BMC isolated by the two different protocols. METHODS AND RESULTS: The recovery of total cell number,colony-forming units (CFU),and the number of mesenchymal stem cells were significantly reduced to 77 +/- 4%,83 +/- 16%,and 65 +/- 15%,respectively,when using the ASTAMI protocol compared with the REPAIR protocol. The capacity of the isolated BMC to migrate in response to stromal cell-derived factor 1 (SDF-1) was profoundly reduced when using the ASTAMI cell isolation procedure (42 +/- 8% and 78 +/- 3% reduction in healthy and CAD-patient cells,respectively). Finally,infusion of BMC into a hindlimb ischaemia model demonstrated a significantly blunted blood-flow-recovery by BMC isolated with the ASTAMI protocol (54 +/- 6% of the effect obtained by REPAIR cells). Comparison of the individual steps identified the use of NaCl and plasma for cell storage as major factors for functional impairment of the BMC. CONCLUSION: Cell isolation protocols have a major impact on the functional activity of bone marrow-derived progenitor cells. The assessment of cell number and viability may not entirely reflect the functional capacity of cells in vivo. Additional functional testing appears to be mandatory to assure proper cell function before embarking on clinical cell therapy trials.
View Publication
Reference
Gruber M et al. (FEB 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 7 2301--6
Acute postnatal ablation of Hif-2alpha results in anemia.
Adaptive transcriptional responses to oxygen deprivation (hypoxia) are mediated by the hypoxia-inducible factors (HIFs),heterodimeric transcription factors composed of two basic helix-loop-helix-PAS family proteins. The transcriptional activity of HIF is determined by the hypoxic stabilization of the HIF-alpha proteins. HIF-1alpha and HIF-2alpha exhibit high sequence homology but have different mRNA expression patterns; HIF-1alpha is expressed ubiquitously whereas HIF-2alpha expression is more restricted to certain tissues,e.g.,the endothelium,lung,brain,and neural crest derivatives. Germ-line deletion of either HIF subunit is embryonic lethal with unique features suggesting important roles for both HIF-alpha isoforms. Global deletion of Hif-2alpha results in distinct phenotypes depending on the mouse strain used for the mutation,clearly demonstrating an important role for HIF-2alpha in mouse development. The function of HIF-2alpha in adult life,however,remains incompletely understood. In this study,we describe the generation of a conditional murine Hif-2alpha allele and the effect of its acute postnatal ablation. Under very stringent conditions,we ablate Hif-2alpha after birth and compare the effect of acute global deletion of Hif-2alpha and Hif-1alpha. Our results demonstrate that HIF-2alpha plays a critical role in adult erythropoiesis,with acute deletion leading to anemia. Furthermore,although HIF-1alpha was first purified and cloned based on its affinity for the human erythropoietin (EPO) 3' enhancer hypoxia response element (HRE) and regulates Epo expression during mouse embryogenesis,HIF-2alpha is the critical alpha isoform regulating Epo under physiologic and stress conditions in adults.
View Publication
Reference
Perry JM et al. (MAY 2007)
Blood 109 10 4494--502
BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors.
The erythroid response to acute anemia relies on the rapid expansion in the spleen of a specialized population of erythroid progenitors termed stress BFU-E. This expansion requires BMP4/Madh5-dependent signaling in vivo; however,in vitro,BMP4 alone cannot recapitulate the expansion of stress BFU-E observed in vivo,which suggests that other signals are required. In this report we show that mutation of the Kit receptor results in a severe defect in the expansion of stress BFU-E,indicating a role for the Kit/SCF signaling pathway in stress erythropoiesis. In vitro analysis showed that BMP4 and SCF are necessary for the expansion of stress BFU-E,but only when spleen cells were cultured in BMP4 + SCF at low-oxygen concentrations did we recapitulate the expansion of stress BFU-E observed in vivo. Culturing spleen cells in BMP4,SCF under hypoxic conditions resulted in the preferential expansion of erythroid progenitors characterized by the expression of Kit,CD71,and TER119. This expression pattern is also seen in stress erythroid progenitors isolated from patients with sickle cell anemia and patients with beta-thalassemia. Taken together these data demonstrate that SCF and hypoxia synergize with BMP4 to promote the expansion and differentiation of stress BFU-E during the recovery from acute anemia.
View Publication