Miura Y et al. (NOV 2006)
Stem cells (Dayton,Ohio) 24 11 2428--36
Mesenchymal stem cell-organized bone marrow elements: an alternative hematopoietic progenitor resource.
Bone marrow-derived mesenchymal stem cells (BMMSCs) are multipotent postnatal stem cells that have been used for the treatment of bone defects and graft-versus-host diseases in clinics. In this study,we found that subcutaneously transplanted human BMMSCs are capable of organizing hematopoietic progenitors of recipient origin. These hematopoietic cells expressed multiple lineages of hematopoietic cell associated markers and were able to rescue lethally irradiated mice,with successful engraftment in the recipient,suggesting a potential bone marrow (BM) resource for stem cell therapies. Furthermore,we found that platelet-derived growth factor (PDGF) promotes the formation of BMMSC-generated BM niches through upregulation of beta-catenin,implying that the PDGF pathway contributes to the formation of ectopic BM. These results indicate that the BMMSC-organized BM niche system represents a unique hematopoietic progenitor resource possessing potential clinical value.
View Publication
Enhanced in vivo homing of uncultured and selectively amplified cord blood CD34+ cells by cotransplantation with cord blood-derived unrestricted somatic stem cells.
Mesenchymal stem cells have been implicated as playing an important role in stem cell engraftment. Recently,a new pluripotent population of umbilical cord blood (UCB) cells,unrestricted somatic stem cells (USSCs),with intrinsic and directable potential to develop into mesodermal,endodermal,and ectodermal fates,has been identified. In this study,we evaluated the capacity of ex vivo expanded USSCs to influence the homing of UCB-derived CD34(+) cells into the marrow and spleen of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. USSCs induced a significant enhancement of CD34(+) cell homing to both bone marrow and spleen (2.2 +/- 0.3- and 2.4 +/- 0.6-fold,respectively; p textless .05),with a magnitude similar to that induced by USSCs that had been thawed prior to transplantation. The effect of USSCs was dose-dependent and detectable at USSC:CD34(+) ratios of 1:1 and above. Enhanced marrow homing by USSCs was unaltered by extensive culture passaging of the cells,as similar enhancement was observed for both early-passage (passage 5 [p5]) and late-passage (p10) USSCs. The homing effect of USSCs was also reflected in an increased proportion of NOD/SCID mice exhibiting significant human cell engraftment 6 weeks after transplantation,with a similar distribution of myeloid and lymphoid components. USSCs enhanced the homing of cellular products of ex vivo expanded UCB lineage-negative (lin(-)) cells,generated in 14-day cultures by Selective Amplification. The relative proportion of homing CD34(+) cells within the culture-expanded cell population was unaltered by USSC cotransplantation. Production of stromal-derived factor-1 (SDF-1) by USSCs was detected by both gene expression and protein released into culture media of these cells. Knockdown of SDF-1 production by USSCs using lentiviral-SiRNA led to a significant (p textless .05) reduction in USSC-mediated enhancement of CD34(+) homing. Our findings thus suggest a clinical potential for using USSCs in facilitating homing and engraftment for cord blood transplant recipients.
View Publication
Reference
Weisberg E et al. (MAR 2007)
Blood 109 5 2112--20
Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias.
Drug resistance resulting from emergence of imatinib-resistant BCR-ABL point mutations is a significant problem in advanced-stage chronic myelogenous leukemia (CML). The BCR-ABL inhibitor,nilotinib (AMN107),is significantly more potent against BCR-ABL than imatinib,and is active against many imatinib-resistant BCR-ABL mutants. Phase 1/2 clinical trials show that nilotinib can induce remissions in patients who have previously failed imatinib,indicating that sequential therapy with these 2 agents has clinical value. However,simultaneous,rather than sequential,administration of 2 BCR-ABL kinase inhibitors is attractive for many reasons,including the theoretical possibility that this could reduce emergence of drug-resistant clones. Here,we show that exposure of a variety of BCR-ABL+ cell lines to imatinib and nilotinib results in additive or synergistic cytotoxicity,including testing of a large panel of cells expressing BCR-ABL point mutations causing resistance to imatinib in patients. Further,using a highly quantifiable bioluminescent in vivo model,drug combinations were at least additive in antileukemic activity,compared with each drug alone. These results suggest that despite binding to the same site in the same target kinase,the combination of imatinib and nilotinib is highly efficacious in these models,indicating that clinical testing of combinations of BCR-ABL kinase inhibitors is warranted.
View Publication
Reference
Tober J et al. (FEB 2007)
Blood 109 4 1433--41
The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis.
In the adult,platelets are derived from unipotential megakaryocyte colony-forming cells (Meg-CFCs) that arise from bipotential megakaryocyte/erythroid progenitors (MEPs). To better define the developmental origin of the megakaryocyte lineage,several aspects of megakaryopoiesis,including progenitors,maturing megakaryocytes,and circulating platelets,were examined in the murine embryo. We found that a majority of hemangioblast precursors during early gastrulation contains megakaryocyte potential. Combining progenitor assays with immunohistochemical analysis,we identified 2 waves of MEPs in the yolk sac associated with the primitive and definitive erythroid lineages. Primitive MEPs emerge at E7.25 along with megakaryocyte and primitive erythroid progenitors,indicating that primitive hematopoiesis is bilineage in nature. Subsequently,definitive MEPs expand in the yolk sac with Meg-CFCs and definitive erythroid progenitors. The first GP1bbeta-positive cells in the conceptus were identified in the yolk sac at E9.5,while large,highly reticulated platelets were detected in the embryonic bloodstream beginning at E10.5. At this time,the number of megakaryocyte progenitors begins to decline in the yolk sac and expand in the fetal liver. We conclude that the megakaryocyte lineage initially originates from hemangioblast precursors during early gastrulation and is closely associated both with primitive and with definitive erythroid lineages in the yolk sac prior to the transition of hematopoiesis to intraembryonic sites.
View Publication
Reference
Carlo-Stella C et al. (JAN 2007)
Stem cells (Dayton,Ohio) 25 1 252--61
Placental growth factor-1 potentiates hematopoietic progenitor cell mobilization induced by granulocyte colony-stimulating factor in mice and nonhuman primates.
The complex hematopoietic effects of placental growth factor (PlGF) prompted us to test in mice and nonhuman primates the mobilization of peripheral blood progenitor cells (PBPCs) elicited by recombinant mouse PlGF-2 (rmPlGF-2) and recombinant human PlGF-1 (rhPlGF-1). PBPC mobilization was evaluated by assaying colony-forming cells (CFCs),high-proliferative potential-CFCs (HPP-CFCs),and long-term culture-initiating cells (LTC-ICs). In mice,both rmPlGF-2 and rhPlGF-1 used as single agents failed to mobilize PBPCs,whereas the combination of rhPlGF-1 and granulocyte colony-stimulating factor (rhG-CSF) increased CFCs and LTC-ICs per milliliter of blood by four- and eightfold,respectively,as compared with rhG-CSF alone. rhPlGF-1 plus rhG-CSF significantly increased matrix metalloproteinase-9 plasma levels over rhG-CSF alone,suggesting a mechanistic explanation for rhPlGF-1/rhG-CSF synergism. In rhesus monkeys,rhPlGF-1 alone had no mobilization effect,whereas rhPlGF-1 (260 microg/kg per day) plus rhG-CSF (100 microg/kg per day) increased rhG-CSF-elicited mobilization of CFCs,HPP-CFCs,and LTC-ICs per milliliter of blood by 5-,7-,and 15-fold,respectively. No specific toxicity was associated with the administration of rhPlGF-1 alone or in combination. In conclusion,our data demonstrate that rhPlGF-1 significantly increases rhG-CSF-elicited hematopoietic mobilization and provide a preclinical rationale for evaluating rhPlGF-1 in the clinical setting.
View Publication
Reference
Cianfarani F et al. (OCT 2006)
The American journal of pathology 169 4 1167--82
Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential.
Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF),an angiogenic mediator promoting pathophysiological neovascularization,is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice,we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover,diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation,maturation,and vascularization,as well as monocytes/macrophages local recruitment. Platelet-derived growth factor,fibroblast growth factor-2,and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds,possibly enhancing PlGF-mediated effects. Finally,PlGF treatment stimulated cultured dermal fibroblast migration,pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion,our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process.
View Publication
Reference
Pal S et al. (SEP 2006)
The Journal of cell biology 174 7 1047--58
An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis.
Establishment of angiogenic circuits that orchestrate blood vessel development and remodeling requires an exquisite balance between the activities of pro- and antiangiogenic factors. However,the logic that permits complex signal integration by vascular endothelium is poorly understood. We demonstrate that a neuropeptide�
View Publication
Reference
Dorrance AM et al. (OCT 2006)
The Journal of clinical investigation 116 10 2707--16
Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations.
We previously identified a rearrangement of mixed-lineage leukemia (MLL) gene (also known as ALL-1,HRX,and HTRX1),consisting of an in-frame partial tandem duplication (PTD) of exons 5 through 11 in the absence of a partner gene,occurring in approximately 4%-7% of patients with acute myeloid leukemia (AML) and normal cytogenetics,and associated with a poor prognosis. The mechanism by which the MLL PTD contributes to aberrant hematopoiesis and/or leukemia is unknown. To examine this,we generated a mouse knockin model in which exons 5 through 11 of the murine Mll gene were targeted to intron 4 of the endogenous Mll locus. Mll(PTD/WT) mice exhibit an alteration in the boundaries of normal homeobox (Hox) gene expression during embryogenesis,resulting in axial skeletal defects and increased numbers of hematopoietic progenitor cells. Mll(PTD/WT) mice overexpress Hoxa7,Hoxa9,and Hoxa10 in spleen,BM,and blood. An increase in histone H3/H4 acetylation and histone H3 lysine 4 (Lys4) methylation within the Hoxa7 and Hoxa9 promoters provides an epigenetic mechanism by which this overexpression occurs in vivo and an etiologic role for MLL PTD gain of function in the genesis of AML.
View Publication
Reference
Sloand EM et al. (SEP 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 39 14483--8
Granulocyte colony-stimulating factor preferentially stimulates proliferation of monosomy 7 cells bearing the isoform IV receptor.
Granulocyte colony-stimulating factor (GCSF) administration has been linked to the development of monosomy 7 in severe congenital neutropenia and aplastic anemia. We assessed the effect of pharmacologic doses of GCSF on monosomy 7 cells to determine whether this chromosomal abnormality developed de novo or arose as a result of favored expansion of a preexisting clone. Fluorescence in situ hybridization (FISH) of chromosome 7 was used to identify small populations of aneuploid cells. When bone marrow mononuclear cells from patients with monosomy 7 were cultured with 400 ng/ml GCSF,all samples showed significant increases in the proportion of monosomy 7 cells. In contrast,bone marrow from karyotypically normal aplastic anemia,myelodysplastic syndrome,or healthy individuals did not show an increase in monosomy 7 cells in culture. In bone marrow CD34 cells of patients with myelodysplastic syndrome and monosomy 7,GCSF receptor (GCSFR) protein was increased. Although no mutation was found in genomic GCSFR DNA,CD34 cells showed increased expression of the GCSFR class IV mRNA isoform,which is defective in signaling cellular differentiation. GCSFR signal transduction via the Jak/Stat system was abnormal in monosomy 7 CD34 cells,with increased phosphorylated signal transducer and activation of transcription protein,STAT1-P,and increased STAT5-P relative to STAT3-P. Our results suggest that pharmacologic doses of GCSF increase the proportion of preexisting monosomy 7 cells. The abnormal response of monosomy 7 cells to GCSF would be explained by the expansion of undifferentiated monosomy 7 clones expressing the class IV GCSFR,which is defective in signaling cell maturation.
View Publication
Reference
Wahlstrom AM et al. (JAN 2007)
Blood 109 2 763--8
Rce1 deficiency accelerates the development of K-RAS-induced myeloproliferative disease.
The RAS proteins undergo farnesylation of a carboxyl-terminal cysteine (the C" of the carboxyl-terminal CaaX motif). After farnesylation�
View Publication
Reference
Kriz V et al. (NOV 2006)
The Journal of biological chemistry 281 45 34484--91
The SHB adapter protein is required for normal maturation of mesoderm during in vitro differentiation of embryonic stem cells.
Definitive mesoderm arises from a bipotent mesendodermal population,and to study processes controlling its development at this stage,embryonic stem (ES) cells can be employed. SHB (Src homology 2 protein in beta-cells) is an adapter protein previously found to be involved in ES cell differentiation to mesoderm. To further study the role of SHB in this context,we have established ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-). Differentiating embryoid bodies (EBs) derived from these ES cell lines were used for gene expression analysis. Alternatively,EBs were stained for the blood vessel marker CD31. For hematopoietic differentiation,EBs were differentiated in methylcellulose. SHB-/- EBs exhibited delayed down-regulation of the early mesodermal marker Brachyury. Later mesodermal markers relatively specific for the hematopoietic,vascular,and cardiac lineages were expressed at lower levels on day 6 or 8 of differentiation in EBs lacking SHB. The expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 was also reduced in SHB-/- EBs. SHB-/- EBs demonstrated impaired blood vessel formation after vascular endothelial growth factor stimulation. In addition,the SHB-/- ES cells formed fewer blood cell colonies than SHB+/+ ES cells. It is concluded that SHB is required for appropriate hematopoietic and vascular differentiation and that delayed down-regulation of Brachyury expression may play a role in this context.
View Publication
Reference
Trowbridge JJ et al. (SEP 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 38 14134--9
Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration.
The signals that control the regenerative ability of hematopoietic stem cells (HSCs) in response to damage are unknown. Here,we demonstrate that downstream activation of the Hedgehog (Hh) signaling pathway induces cycling and expansion of primitive bone marrow hematopoietic cells under homeostatic conditions and during acute regeneration. However,this effect is at the expense of HSC function,because continued Hh activation during regeneration represses expression of specific cell cycle regulators,leading to HSC exhaustion. In vivo treatment with an inhibitor of the Hh pathway rescues these transcriptional and functional defects in HSCs. Our study establishes Hh signaling as a regulator of the HSC cell cycle machinery that balances hematopoietic homeostasis and regeneration in vivo.
View Publication