KLF4 suppresses transformation of pre-B cells by ABL oncogenes.
Genes that are strongly repressed after B-cell activation are candidates for being inactivated,mutated,or repressed in B-cell malignancies. Krüppel-like factor 4 (Klf4),a gene down-regulated in activated murine B cells,is expressed at low levels in several types of human B-cell lineage lymphomas and leukemias. The human KLF4 gene has been identified as a tumor suppressor gene in colon and gastric cancer; in concordance with this,overexpression of KLF4 can suppress proliferation in several epithelial cell types. Here we investigate the effects of KLF4 on pro/pre-B-cell transformation by v-Abl and BCR-ABL,oncogenes that cause leukemia in mice and humans. We show that overexpression of KLF4 induces arrest and apoptosis in the G1 phase of the cell cycle. KLF4-mediated death,but not cell-cycle arrest,can be rescued by Bcl-XL overexpression. Transformed pro/pre-B cells expressing KLF4 display increased expression of p21CIP and decreased expression of c-Myc and cyclin D2. Tetracycline-inducible expression of KLF4 in B-cell progenitors of transgenic mice blocks transformation by BCR-ABL and depletes leukemic pre-B cells in vivo. Collectively,our work identifies KLF4 as a putative tumor suppressor in B-cell malignancies.
View Publication
Reference
Nemeth MJ et al. (SEP 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 37 13783--8
Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation.
Hmgb3 is an X-linked member of a family of sequence-independent chromatin-binding proteins that is preferentially expressed in hematopoietic stem cells (HSC). Hmgb3-deficient mice (Hmgb3(-/Y)) contain normal numbers of HSCs,capable of self-renewal and hematopoietic repopulation,but fewer common lymphoid (CLP) and common myeloid progenitors (CMP). In this study,we tested the hypothesis that Hmgb3(-/Y) HSCs are biased toward self-renewal at the expense of progenitor production. Wild-type and Hmgb3(-/Y) CLPs and CMPs proliferate and differentiate equally in vitro,indicating that CLP and CMP function normally in Hmgb3(-/Y) mice. Hmgb3(-/Y) HSCs exhibit constitutive activation of the canonical Wnt signaling pathway,which regulates stem cell self-renewal. Increased Wnt signaling in Hmgb3(-/Y) HSCs corresponds to increased expression of Dvl1,a positive regulator of the canonical Wnt pathway. To induce hematopoietic stress and a subsequent response from HSCs,we treated Hmgb3(-/Y) mice with 5-fluorouracil. Hmgb3(-/Y) mice exhibit a faster recovery of functional HSCs after administration of 5-fluorouracil compared with wild-type mice,which may be due to the increased Wnt signaling. Furthermore,the recovery of HSC number in Hmgb3(-/Y) mice occurs more rapidly than CLP and CMP recovery. From these data,we propose a model in which Hmgb3 is required for the proper balance between HSC self-renewal and differentiation.
View Publication
Reference
Mukai HY et al. (NOV 2006)
Molecular and cellular biology 26 21 7953--65
Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation.
The nuclear proto-oncogene c-myb plays crucial roles in the growth,survival,and differentiation of hematopoietic cells. We established three lines of erythropoietin receptor-transgenic mice and found that one of them exhibited anemia,thrombocythemia,and splenomegaly. These abnormalities were independent of the function of the transgenic erythropoietin receptor and were observed exclusively in mice harboring the transgene homozygously,suggesting transgenic disruption of a certain gene. The transgene was inserted 77 kb upstream of the c-myb gene,and c-Myb expression was markedly decreased in megakaryocyte/erythrocyte lineage-restricted progenitors (MEPs) of the homozygous mutant mice. In the bone marrows and spleens of the mutant mice,numbers of megakaryocytes were increased and numbers of erythroid progenitors were decreased. These abnormalities were reproducible in vitro in a coculture assay of MEPs with OP9 cells but eliminated by the retroviral expression of c-Myb in MEPs. The erythroid/megakaryocytic abnormalities were reconstituted in mice in vivo by transplantation of mutant mouse bone marrow cells. These results demonstrate that the transgene insertion into the c-myb gene far upstream regulatory region affects the gene expression at the stage of MEPs,leading to an imbalance between erythroid and megakaryocytic cells,and suggest that c-Myb is an essential regulator of the erythroid-megakaryocytic lineage bifurcation.
View Publication
Reference
Priestley GV et al. (JAN 2007)
Blood 109 1 109--11
Sustained alterations in biodistribution of stem/progenitor cells in Tie2Cre+ alpha4(f/f) mice are hematopoietic cell autonomous.
We have generated Tie2Cre+alpha4(f/f) mice with documented alpha4-integrin ablation in hematopoietic and endothelial cells. A prominent feature in this model is a sustained,significant increase in circulating progenitors at levels higher than the levels seen with Tie2Cre+VCAM-1(f/f) mice. To test whether phenotypic differences are due to contributions by ligands other than VCAM-1 in bone marrow,or to alpha4-deficient endothelial cells or pericytes,we carried out transplantation experiments using these mice as donors or as recipients. Changes in progenitor biodistribution after transplantation were seen only with alpha4-deficient donor cells,suggesting that these cells were necessary and sufficient to reproduce the phenotype with no discernible contribution by alpha4-deficient nonhematopoietic cells. Because several similarities are seen after transplantation between our results and those with CXCR4-/- donor cells,the data suggest that VLA4/VCAM-1 and CXCR4/CXCL12 pathways contribute to a nonredundant,ongoing signaling required for bone marrow retention of progenitor cells during homeostasis.
View Publication
Reference
Pastos KM et al. (NOV 2006)
Blood 108 10 3360--2
Differential effects of recombinant thrombopoietin and bone marrow stromal-conditioned media on neonatal versus adult megakaryocytes.
Umbilical cord blood (CB) is a valuable source of stem cells for transplantation,but CB transplantations are frequently complicated by delayed platelet engraftment. The reasons underlying this are unclear. We hypothesized that CB- and peripheral-blood (PB)-derived megakaryocytes (MKs) respond differently to the adult hematopoietic microenvironment and to thrombopoietin (Tpo). To test this,we cultured CB- and PB-CD34(+) cells in adult bone marrow stromal conditioned media (CM) or unconditioned media (UCM) with increasing concentrations of recombinant Tpo and compared the effects of these conditions on CB-versus PB-MKs. PB-MKs reached highest ploidy in response to UCM + 100 ng/mL rTpo,and the addition of CM inhibited their maturation. In contrast,CB-MKs reached highest ploidy in CM without rTpo,and high rTpo concentrations (textgreater 0.1 ng/mL) inhibited their maturation. This is the first evidence that human neonatal and adult MKs have substantially different biologic responses to Tpo and potentially to other cytokines.
View Publication
Reference
Nakagawa M et al. (NOV 2006)
Blood 108 10 3329--34
AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis.
The Notch1-RBP-Jkappa and the transcription factor Runx1 pathways have been independently shown to be indispensable for the establishment of definitive hematopoiesis. Importantly,expression of Runx1 is down-regulated in the para-aortic splanchnopleural (P-Sp) region of Notch1- and Rbpsuh-null mice. Here we demonstrate that Notch1 up-regulates Runx1 expression and that the defective hematopoietic potential of Notch1-null P-Sp cells is successfully rescued in the OP9 culture system by retroviral transfer of Runx1. We also show that Hes1,a known effector of Notch signaling,potentiates Runx1-mediated transactivation. Together with the recent findings in zebrafish,Runx1 is postulated to be a cardinal down-stream mediator of Notch signaling in hematopoietic development throughout vertebrates. Our findings also suggest that Notch signaling may modulate both expression and transcriptional activity of Runx1.
View Publication
Reference
Baba Y et al. (AUG 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 4 2294--303
Constitutively active beta-catenin promotes expansion of multipotent hematopoietic progenitors in culture.
This study was designed to investigate one component of the Wnt/beta-catenin signaling pathway that has been implicated in stem cell self-renewal. Retroviral-mediated introduction of stable beta-catenin to primitive murine bone marrow cells allowed the expansion of multipotential c-Kit(low)Sca-1(low/-)CD19(-) CD11b/Mac-1(-)Flk-2(-)CD43(+)AA4.1(+)NK1.1(-)CD3(-)CD11c(-)Gr-1(-)CD45R/B220(+) cells in the presence of stromal cells and cytokines. They generated myeloid,T,and B lineage lymphoid cells in culture,but had no T lymphopoietic potential when transplanted. Stem cell factor and IL-6 were found to be minimal requirements for long-term,stromal-free propagation,and a beta-catenin-transduced cell line was maintained for 5 mo with these defined conditions. Although multipotential and responsive to many normal stimuli in culture,it was unable to engraft several types of irradiated recipients. These findings support previous studies that have implicated the canonical Wnt pathway signaling in regulation of multipotent progenitors. In addition,we demonstrate how it may be experimentally manipulated to generate valuable cell lines.
View Publication
Reference
Griswold IJ et al. (AUG 2006)
Molecular and cellular biology 26 16 6082--93
Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib.
Kinase domain (KD) mutations of Bcr-Abl interfering with imatinib binding are the major mechanism of acquired imatinib resistance in patients with Philadelphia chromosome-positive leukemia. Mutations of the ATP binding loop (p-loop) have been associated with a poor prognosis. We compared the transformation potency of five common KD mutants in various biological assays. Relative to unmutated (native) Bcr-Abl,the ATP binding loop mutants Y253F and E255K exhibited increased transformation potency,M351T and H396P were less potent,and the performance of T315I was assay dependent. The transformation potency of Y253F and M351T correlated with intrinsic Bcr-Abl kinase activity,whereas the kinase activity of E255K,H396P,and T315I did not correlate with transforming capabilities,suggesting that additional factors influence transformation potency. Analysis of the phosphotyrosine proteome by mass spectroscopy showed differential phosphorylation among the mutants,a finding consistent with altered substrate specificity and pathway activation. Mutations in the KD of Bcr-Abl influence kinase activity and signaling in a complex fashion,leading to gain- or loss-of-function variants. The drug resistance and transformation potency of mutants may determine the outcome of patients on therapy with Abl kinase inhibitors.
View Publication
Reference
Ong CHP et al. (DEC 2006)
American journal of physiology. Regulatory,integrative and comparative physiology 291 6 R1602--12
Regulation of progranulin expression in myeloid cells.
Progranulin (pgrn; granulin-epithelin precursor,PC-cell-derived growth factor,or acrogranin) is a multifunctional secreted glycoprotein implicated in tumorigenesis,development,inflammation,and repair. It is highly expressed in macrophage and monocyte-derived dendritic cells. Here we investigate its regulation in myeloid cells. All-trans retinoic acid (ATRA) increased pgrn mRNA levels in myelomonocytic cells (CD34(+) progenitors; monoblastic U-937; monocytic THP-1; progranulocytic HL-60; macrophage RAW 264.7) but not in nonmyeloid cells tested. Interleukin-4 impaired basal expression of pgrn in U-937. Differentiation agents DMSO,and,in U-937 only,phorbol ester [phorbol 12-myristate,13-acetate (PMA)] elevated pgrn mRNA expression late in differentiation,suggestive of roles for pgrn in more mature terminally differentiated granulocyte/monocytes rather than during growth or differentiation. The response of pgrn mRNA to ATRA differs in U-937 and HL-60 lineages. In U-937,ATRA and chemical differentiation agents greatly increased pgrn mRNA stability,whereas,in HL-60,ATRA accelerated pgrn mRNA turnover. The initial upregulation of pgrn mRNA after stimulation with ATRA was independent of de novo protein synthesis in U-937 but not HL-60. Chemical blockade of nuclear factor-kappaB (NF-kappaB) activation impaired ATRA-stimulated pgrn expression in HL-60 but not U-937,whereas in U-937 it blocked PMA-induced pgrn mRNA expression,suggestive of cell-specific roles for NF-kappaB in determining pgrn mRNA levels. We propose that: 1) ATRA regulates pgrn mRNA levels in myelomonocytic cells; 2) ATRA acts in a cell-specific manner involving the differential control of mRNA stability and differential requirement for NF-kappaB signaling; and 3) elevated pgrn mRNA expression is characteristic of more mature cells and does not stimulate differentiation.
View Publication
Reference
Bauer TR et al. (NOV 2006)
Blood 108 10 3313--20
Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy.
Canine leukocyte adhesion deficiency (CLAD) represents the canine counter-part of the human disease leukocyte adhesion deficiency (LAD). Defects in the leukocyte integrin CD18 adhesion molecule in both CLAD and LAD lead to recurrent,life-threatening bacterial infections. We evaluated ex vivo retroviral-mediated gene therapy in CLAD using 2 nonmyeloablative conditioning regimens--200 cGy total body irradiation (TBI) or 10 mg/kg busulfan--with or without posttransplantation immunosuppression. In 6 of 11 treated CLAD dogs,therapeutic levels of CD18(+) leukocytes were achieved. Conditioning with either TBI or busulfan allowed long-term engraftment,and immunosuppression was not required for efficacy. The percentage of CD18(+) leukocytes in the peripheral blood progressively increased over 6 to 8 months after infusion to levels ranging from 1.26% to 8.37% at 1-year follow-up in the 6 dogs. These levels resulted in reversal or moderation of the severe CLAD phenotype. Linear amplification-mediated polymerase chain reaction assays indicated polyclonality of insertion sites. These results describe ex vivo hematopoietic stem cell gene transfer in a disease-specific,large animal model using 2 clinically applicable conditioning regimens,and they provide support for the use of nonmyeloablative conditioning regimens in preclinical protocols of retroviral-mediated gene transfer for nonmalignant hematopoietic diseases such as LAD.
View Publication
Reference
Jiang J et al. (AUG 2006)
Blood 108 3 1077--83
cMYB is involved in the regulation of fetal hemoglobin production in adults.
A quantitative trait locus (QTL) controlling HbF levels has previously been mapped to chromosome 6q23 in an Asian-Indian kindred with beta thalassemia and heterocellular hereditary persistence of fetal hemoglobin (HPFH). Five protein-coding genes,ALDH8A1,HBS1L,cMYB,AHI1,and PDE7B reside in this 1.5-megabase (Mb) candidate interval of 6q23. To direct sequencing efforts we compared the expression profiles of these 5 genes between 12 individuals with elevated and 14 individuals with normal HbF levels during adult erythropoiesis by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Two genes,cMYB and HBS1L,demonstrated simultaneous transcriptional down-regulation in individuals with elevated HbF levels. Transfection of K562 cells encoding human cDNA of cMYB and HBS1L genes showed that,although overexpression of ectopic cMYB inhibited gamma-globin gene expression,overexpression of HBS1L had no effect. Low levels of cMYB were associated with low cell expansions,accelerated erythroid maturation,and higher number of macrophages in erythroid cell culture. These observations suggest that differences in the intrinsic levels of cMYB may account for some of the variation in adult HbF levels. The possible mechanism of cMYB influencing gamma- to beta-globin switching is discussed.
View Publication
Reference
Suzuki T et al. (NOV 2006)
Stem cells (Dayton,Ohio) 24 11 2456--65
Highly efficient ex vivo expansion of human hematopoietic stem cells using Delta1-Fc chimeric protein.
Ex vivo expansion of hematopoietic stem cells (HSCs) has been explored in the fields of stem cell biology,gene therapy,and clinical transplantation. Here,we demonstrate efficient ex vivo expansion of HSCs measured by long-term severe combined immunodeficient (SCID) repopulating cells (SRCs) from human cord blood CD133-sorted cells using a soluble form of Delta1. After a 3-week culture on immobilized Delta1 supplemented with stem cell factor,thrombopoietin,Flt-3 ligand,interleukin (IL)-3,and IL-6/soluble IL-6 receptor chimeric protein (FP6) in a serum- and stromal cell-free condition,we achieved approximately sixfold expansion of SRCs when evaluated by limiting dilution/transplantation assays. The maintenance of full multipotency and self-renewal capacity during culture was confirmed by transplantation to nonobese diabetic/SCID/gammac(null) mice,which showed myeloid,B,T,and natural killer cells as well as CD133(+)CD34(+) cells,and hematopoietic reconstitution in the secondary recipients. Interestingly,the CD133-sorted cells contained approximately 4.5 times more SRCs than the CD34-sorted cells. The present study provides a promising method to expand HSCs and encourages future trials on clinical transplantation.
View Publication