Wiedmer T et al. (SEP 2004)
Proceedings of the National Academy of Sciences of the United States of America 101 36 13296--301
Adiposity, dyslipidemia, and insulin resistance in mice with targeted deletion of phospholipid scramblase 3 (PLSCR3).
The phospholipid scramblases (PLSCR1 to PLSCR4) are a structurally and functionally unique class of proteins,which are products of a tetrad of genes conserved from Caenorhabditis elegans to humans. The best characterized member of this family,PLSCR1,is implicated in the remodeling of the transbilayer distribution of plasma membrane phospholipids but is also required for normal signaling through select growth factor receptors. Mice with targeted deletion of PLSCR1 display perinatal granulocytopenia due to defective response of hematopoietic precursors to granulocyte colony-stimulating factor and stem cell factor. To gain insight into the biologic function of another member of the PLSCR family,we investigated mice with targeted deletion of PLSCR3,a protein that like PLSCR1 is expressed in many blood cells but which,by contrast to PLSCR1,is also highly expressed in fat and muscle. PLSCR3(-/-) mice at 2 months of age displayed aberrant accumulation of abdominal fat when maintained on standard rodent chow,which was accompanied by insulin resistance,glucose intolerance,and dyslipidemia. Primary adipocytes and cultured bone-marrow-derived macrophages from PLSCR3(-/-) mice were engorged with neutral lipid,and adipocytes displayed defective responses to exogenous insulin. Plasma of PLSCR3(-/-) mice was elevated in non-high-density lipoproteins,cholesterol,triglycerides,nonesterified fatty acids,and leptin,whereas adiponectin was low. These data suggest that the expression of PLSCR3 may be required for normal adipocyte and/or macrophage maturation or function and raise the possibility that deletions or mutations affecting the PLSCR3(-/-) gene locus may contribute to the risk for lipid-related disorders in humans.
View Publication
Reference
Sun W and Downing JR (DEC 2004)
Blood 104 12 3565--72
Haploinsufficiency of AML1 results in a decrease in the number of LTR-HSCs while simultaneously inducing an increase in more mature progenitors.
The AML1/CBFbeta transcriptional complex is essential for the formation of definitive hematopoietic stem cells (HSCs). Moreover,development of the hematopoietic system is exquisitely sensitive to the level of this complex. To investigate the effect of AML1 dosage on adult hematopoiesis,we compared the hematopoietic systems of AML1+/- and AML1+/+ mice. Surprisingly,loss of a single AML1 allele resulted in a 50% reduction in long-term repopulating hematopoietic stem cells (LTR-HSCs). This decrease did not,however,extend to the next level of hematopoietic differentiation. Instead,AML1+/- mice had an increase in multilineage progenitors,an expansion that resulted in enhanced engraftment following transplantation. The expanded pool of AML1+/- progenitors remained responsive to homeostatic mechanisms and thus the number of mature cells in most lineages remained within normal limits. Two notable exceptions were a decrease in CD4(+) T cells,leading to an inversion of the CD4(+) to CD8(+) T-cell ratio and a decrease in circulating platelets. These data demonstrate a dosage-dependent role for AML1/CBFbeta in regulating the quantity of HSCs and their downstream committed progenitors,as well as a more restricted role in T cells and platelets. The latter defect mimics one of the key abnormalities in human patients with the familial platelet disorder resulting from AML1 haploinsufficiency.
View Publication
Reference
Koh K-R et al. (MAY 2005)
Blood 105 10 3833--40
Immunomodulatory derivative of thalidomide (IMiD CC-4047) induces a shift in lineage commitment by suppressing erythropoiesis and promoting myelopoiesis.
Immunomodulatory derivative (IMiD) CC-4047,a new analog of thalidomide,directly inhibits growth of B-cell malignancies in vivo and in vitro and exhibits stronger antiangiogenic activity than thalidomide. However,there is little information on whether CC-4047 affects normal hematopoiesis. Here we investigated the effect of CC-4047 on lineage commitment and differentiation of hematopoietic stem cells. We found that CC-4047 effectively inhibits erythroid cell colony formation from CD34+ cells and increases the frequency of myeloid colonies. We also demonstrate that development of both erythropoietin-independent and erythropoietin-dependent red cell progenitors was strongly inhibited by CC-4047,while terminal red cell differentiation was unaffected. DNA microarray analysis revealed that red cell transcription factors,including GATA-1,GATA-2,erythroid Kruppel-like factor (EKLF),and growth factor independence-1B (Gfi-1b),were down-regulated in CC-4047-treated CD34+ cells,while myeloid transcription factors such as CCAAT/enhancer binding protein-alpha (C/EBPalpha),C/EBPdelta,and C/EBPepsilon were induced. Analysis of cytokine secretion indicated that CC-4047 induced secretion of cytokines that enhance myelopoiesis and inhibit erythropoiesis. In conclusion,these data indicate that CC-4047 might directly influence lineage commitment of hematopoietic cells by increasing the propensity of stem and/or progenitor cells to undergo myeloid cell development and concomitantly inhibiting red cell development. Therefore,CC-4047 provides a valuable tool to study the mechanisms underlying lineage commitment.
View Publication
Reference
De Falco E et al. (DEC 2004)
Blood 104 12 3472--82
SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells.
Chemokine stromal derived factor 1 (SDF-1) is involved in trafficking of hematopoietic stem cells (HSCs) from the bone marrow (BM) to peripheral blood (PB) and has been found to enhance postischemia angiogenesis. This study was aimed at investigating whether SDF-1 plays a role in differentiation of BM-derived c-kit(+) stem cells into endothelial progenitor cells (EPCs) and in ischemia-induced trafficking of stem cells from PB to ischemic tissues. We found that SDF-1 enhanced EPC number by promoting alpha(2),alpha(4),and alpha(5) integrin-mediated adhesion to fibronectin and collagen I. EPC differentiation was reduced in mitogen-stimulated c-kit(+) cells,while cytokine withdrawal or the overexpression of the cyclin-dependent kinase (CDK) inhibitor p16(INK4) restored such differentiation,suggesting a link between control of cell cycle and EPC differentiation. We also analyzed the time course of SDF-1 expression in a mouse model of hind-limb ischemia. Shortly after femoral artery dissection,plasma SDF-1 levels were up-regulated,while SDF-1 expression in the bone marrow was down-regulated in a timely fashion with the increase in the percentage of PB progenitor cells. An increase in ischemic tissue expression of SDF-1 at RNA and protein level was also observed. Finally,using an in vivo assay such as injection of matrigel plugs,we found that SDF-1 improves formation of tubulelike structures by coinjected c-kit(+) cells. Our findings unravel a function for SDF-1 in increase of EPC number and formation of vascular structures by bone marrow progenitor cells.
View Publication
Reference
Xia L et al. (NOV 2004)
Blood 104 10 3091--6
Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow.
Murine hematopoietic stem and progenitor cells (HSPCs) home to bone marrow in part by rolling on P-selectin and E-selectin expressed on endothelial cells. Human adult CD34(+) cells,which are enriched in HSPCs,roll on endothelial selectins in bone marrow vessels of nonobese diabetic/severe combined immune deficiency (NOD/SCID) mice. Many human umbilical cord blood (CB) CD34(+) cells do not roll in these vessels,in part because of an uncharacterized defect in binding to P-selectin. Selectin ligands must be alpha1-3 fucosylated to form glycan determinants such as sialyl Lewis x (sLe(x)). We found that inadequate alpha1-3 fucosylation of CB CD34(+) cells,particularly CD34(+)CD38(-/low) cells that are highly enriched in HSPCs,caused them to bind poorly to E-selectin as well as to P-selectin. Treatment of CB CD34(+) cells with guanosine diphosphate (GDP) fucose and exogenous alpha1-3 fucosyltransferase VI increased cell-surface sLe(x) determinants,augmented binding to fluid-phase P- and E-selectin,and improved cell rolling on P- and E-selectin under flow. Similar treatment of CB mononuclear cells enhanced engraftment of human hematopoietic cells in bone marrows of irradiated NOD/SCID mice. These observations suggest that alpha1-3 fucosylation of CB cells might be a simple and effective method to improve hematopoietic cell homing to and engraftment in bone marrows of patients receiving CB transplants.
View Publication
Reference
Goyama S et al. (DEC 2004)
Blood 104 12 3558--64
The transcriptionally active form of AML1 is required for hematopoietic rescue of the AML1-deficient embryonic para-aortic splanchnopleural (P-Sp) region.
Acute myelogenous leukemia 1 (AML1; runt-related transcription factor 1 [Runx1]) is a member of Runx transcription factors and is essential for definitive hematopoiesis. Although AML1 possesses several subdomains of defined biochemical functions,the physiologic relevance of each subdomain to hematopoietic development has been poorly understood. Recently,the consequence of carboxy-terminal truncation in AML1 was analyzed by the hematopoietic rescue assay of AML1-deficient mouse embryonic stem cells using the gene knock-in approach. Nonetheless,a role for specific internal domains,as well as for mutations found in a human disease,of AML1 remains to be elucidated. In this study,we established an experimental system to efficiently evaluate the hematopoietic potential of AML1 using a coculture system of the murine embryonic para-aortic splanchnopleural (P-Sp) region with a stromal cell line,OP9. In this system,the hematopoietic defect of AML1-deficient P-Sp can be rescued by expressing AML1 with retroviral infection. By analysis of AML1 mutants,we demonstrated that the hematopoietic potential of AML1 was closely related to its transcriptional activity. Furthermore,we showed that other Runx transcription factors,Runx2/AML3 or Runx3/AML2,could rescue the hematopoietic defect of AML1-deficient P-Sp. Thus,this experimental system will become a valuable tool to analyze the physiologic function and domain contribution of Runx proteins in hematopoiesis.
View Publication
Reference
Karamatic Crew V et al. (OCT 2004)
Blood 104 8 2217--23
CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin.
Tetraspanins are thought to facilitate the formation of multiprotein complexes at cell surfaces,but evidence illuminating the biologic importance of this role is sparse. Tetraspanin CD151 forms very stable laminin-binding complexes with integrins alpha3beta1 and alpha6beta1 in kidney and alpha3beta1 and alpha6beta4 in skin. It is encoded by a gene at the same position on chromosome 11p15.5 as the MER2 blood group gene. We show that CD151 expresses the MER2 blood group antigen and is located on erythrocytes. We examined CD151 in 3 MER2-negative patients (2 are sibs) of Indian Jewish origin with end-stage kidney disease. In addition to hereditary nephritis the sibs have sensorineural deafness,pretibial epidermolysis bullosa,and beta-thalassemia minor. The 3 patients are homozygous for a single nucleotide insertion (G383) in exon 5 of CD151,causing a frameshift and premature stop signal at codon 140. The resultant truncated protein would lack its integrin-binding domain. We conclude that CD151 is essential for the proper assembly of the glomerular and tubular basement membrane in kidney,has functional significance in the skin,is probably a component of the inner ear,and could play a role in erythropoiesis.
View Publication
Reference
Chandrashekran A et al. (NOV 2004)
Blood 104 9 2697--703
Targeted retroviral transduction of c-kit+ hematopoietic cells using novel ligand display technology.
Gene therapy for a wide variety of disorders would be greatly enhanced by the development of vectors that could be targeted for gene delivery to specific populations of cells. We describe here high-efficiency targeted transduction based on a novel targeting strategy that exploits the ability of retroviruses to incorporate host cell proteins into the surface of the viral particle as they bud through the plasma membrane. Ecotropic retroviral particles produced in cells engineered to express the membrane-bound form of stem cell factor (mbSCF) transduce both human cell lines and primary cells with high efficiency in a strictly c-kit (SCF receptor)-dependent fashion. The availability of efficient targeted vectors provides a platform for the development of a new generation of therapies using in vivo gene delivery.
View Publication
Reference
Cai J et al. (JUL 2004)
Experimental hematology 32 7 585--98
In search of stemness"."
Stem cells have been identified and characterized in a variety of tissues. In this review we examine possible shared properties of stem cells. We suggest that irrespective of their lineal origin,stem cells have to respond in similar ways to regulate self-renewal and differentiation and it is likely that cell-cycle control,asymmetry/differentiation controls,cellular protective and DNA repair mechanisms,and associated apoptosis/senescence signaling pathways all might be expected to be more highly regulated in stem cells,likely by similar mechanisms. We review the literature to suggest a set of candidate stemness genes that may serve as universal stem cell markers. While we predict many similarities,we also predict that differences will exist between stem cell populations and that when transdifferentiation is considered genes expected to be both similar and different need to be examined.
View Publication
Reference
Griswold IJ et al. (NOV 2004)
Blood 104 9 2912--8
Effects of MLN518, a dual FLT3 and KIT inhibitor, on normal and malignant hematopoiesis.
Internal tandem duplications (ITDs) of the FMS-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase are found in approximately 30% of patients with acute myelogenous leukemia (AML) and are associated with a poor prognosis. FLT3 ITD mutations result in constitutive kinase activation and are thought to be pathogenetically relevant,implicating FLT3 as a plausible therapeutic target. MLN518 (formerly CT53518) is a small molecule inhibitor of the FLT3,KIT,and platelet-derived growth-factor receptor (PDGFR) tyrosine kinases with significant activity in murine models of FLT3 ITD-positive leukemia. Given the importance of FLT3 and KIT for normal hematopoietic progenitor cells,we analyzed the effect of MLN518 on murine hematopoiesis under steady-state conditions,after chemotherapy-induced myelosuppression,and during bone marrow transplantation. In these assays,we show that MLN518 has mild toxicity toward normal hematopoiesis at concentrations that are effective in treating FLT3 ITD-positive leukemia in mice. We also demonstrate that MLN518 preferentially inhibits the growth of blast colonies from FLT3 ITD-positive compared with ITD-negative patients with AML,at concentrations that do not significantly affect colony formation by normal human progenitor cells. In analogy to imatinib mesylate in BCR-ABL-positive acute leukemia,MLN518-induced remissions may not be durable. Our studies provide the basis for integrating this compound into chemotherapy and transplantation protocols.
View Publication
Reference
Ohene-Abuakwa Y et al. (JAN 2005)
Blood 105 2 838--46
Two-phase culture in Diamond Blackfan anemia: localization of erythroid defect.
The erythroid defect in Diamond Blackfan anemia (DBA) is known to be intrinsic to the stem cell,but its molecular pathophysiology remains obscure. Using a 2-phase liquid erythroid culture system,we have demonstrated a consistent defect in DBA,regardless of clinical severity,including 3 first-degree relatives with normal hemoglobin levels but increased erythrocyte adenosine deaminase activity. DBA cultures were indistinguishable from controls until the end of erythropoietin (Epo)-free phase 1,but failed to demonstrate the normal synchronized wave of erythroid expansion and terminal differentiation on exposure to Epo. Dexamethasone increased Epo sensitivity of erythroid progenitor cells,and enhanced erythroid expansion in phase 2 in both normal and DBA cultures. In DBA cultures treated with dexamethasone,Epo sensitivity was comparable to normal,but erythroid expansion remained subnormal. In clonogenic phase 2 cultures,the number of colonies did not significantly differ between normal cultures and DBA,in the presence or absence of dexamethasone,and at both low and high Epo concentrations. However,colonies were markedly smaller in DBA under all conditions. This suggests that the Epo-triggered onset of terminal maturation is intact in DBA,and the defect lies down-stream of the Epo receptor,influencing survival and/or proliferation of erythroid progenitors.
View Publication
Reference
Giebel B et al. (OCT 2004)
Blood 104 8 2332--8
Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells.
During ontogenesis and the entire adult life hematopoietic stem and progenitor cells have the capability to migrate. In comparison to the process of peripheral leukocyte migration in inflammatory responses,the molecular and cellular mechanisms governing the migration of these cells remain poorly understood. A common feature of migrating cells is that they need to become polarized before they migrate. Here we have investigated the issue of cell polarity of hematopoietic stem/progenitor cells in detail. We found that human CD34(+) hematopoietic cells (1) acquire a polarized cell shape upon cultivation,with the formation of a leading edge at the front pole and a uropod at the rear pole; (2) exhibit an amoeboid movement,which is similar to the one described for migrating peripheral leukocytes; and (3) redistribute several lipid raft markers including cholesterol-binding protein prominin-1 (CD133) in specialized plasma membrane domains. Furthermore,polarization of CD34(+) cells is stimulated by early acting cytokines and requires the activity of phosphoinositol-3-kinase as previously reported for peripheral leukocyte polarization. Together,our data reveal a strong correlation between polarization and migration of peripheral leukocytes and hematopoietic stem/progenitor cells and suggest that they are governed by similar mechanisms.
View Publication