Fang L et al. (MAY 2008)
The Journal of Experimental Medicine 205 5 1037--48
Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation
We identify the tumor necrosis factor receptor superfamily 25 (TNFRSF25)/TNFSF15 pair as critical trigger for allergic lung inflammation,which is a cardinal feature of asthma. TNFRSF25 (TNFR25) signals are required to exert T helper cell 2 (Th2) effector function in Th2-polarized CD4 cells and co-stimulate interleukin (IL)-13 production by glycosphingolipid-activated NKT cells. In vivo,antibody blockade of TNFSF15 (TL1A),which is the ligand for TNFR25,inhibits lung inflammation and production of Th2 cytokines such as IL-13,even when administered days after airway antigen exposure. Similarly,blockade of TNFR25 by a dominant-negative (DN) transgene,DN TNFR25,confers resistance to lung inflammation in mice. Allergic lung inflammation-resistant,NKT-deficient mice become susceptible upon adoptive transfer of wild-type NKT cells,but not after transfer of DN TNFR25 transgenic NKT cells. The TNFR25/TL1A pair appears to provide an early signal for Th2 cytokine production in the lung,and therefore may be a drug target in attempts to attenuate lung inflammation in asthmatics.
View Publication
Inagi R et al. (NOV 2007)
Nephrology,dialysis,transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 22 11 3311--7
Establishment of a sandwich ELISA for human megsin, a kidney-specific serine protease inhibitor.
BACKGROUND: We previously identified a novel serine protease inhibitor (serpin),megsin,which is predominantly expressed in the kidney. Megsin expression is up-regulated in human and experimental renal diseases associated with mesangial proliferation and expansion,suggesting that urinary megsin may be a novel diagnostic marker for some renal diseases. METHODS: We established a specific and sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for megsin and measured urinary megsin of patients with various renal diseases. RESULTS: Megsin ELISA specifically detected megsin but not other serpins. The detection limit was 0.04 ng/ml,which allowed detection of urinary megsin in 3.6% of healthy individuals. The antigenic epitope in the urine detected by the ELISA was confirmed as megsin protein by time-of-flight mass spectrometry. Among patients with rapidly progressive glomerulonephritis (n = 18),55.6% were urinary megsin-positive,while 24.1% in IgA nephropathy (n = 112) and 15.1% in chronic non-IgA glomerulonephritis (n = 245) were urinary megsin-positive,respectively. Among patients with chronic renal failure due to unknown causes (n = 74),18.9% were positive for urinary megsin. In diabetic patients with or without nephropathy (n = 1073),12.3% were urinary megsin-positive,while positivity of urinary megsin in patients with non-renal diseases (n = 768) was equivalent (3.3%) to that of healthy individuals. Of note,when urinary megsin-positive patients with diabetic nephropathy (n = 71) were classified into four stages by their proteinuria and estimated glomerular filtration rate,urinary megsin excretion increased as the stage progressed up to stage 3A,suggesting correlation of that with mesangial expansion level. Urinary megsin decreased in the advanced stage,probably reflecting development of glomerulosclerosis. CONCLUSION: We established a high-sensitive megsin ELISA,which detects urinary megsin in some patients with renal diseases and in only a few healthy subjects. Megsin ELISA may be a novel diagnostic tool for renal diseases.
View Publication
Bö et al. (DEC 2005)
Journal of Immunological Methods 307 1-2 13--23
Establishment of a strategy for the rapid generation of a monoclonal antibody against the human protein SNEV (hNMP200) by flow-cytometric cell sorting
The screening for antigen-specific hybridoma cells with adequate production rates is still a time-,labour- and money-consuming procedure. A reduction in cell culture testing by specifically selecting those fused cells that produce antibody could therefore make hybridoma technology more attractive,even for small research groups or for newly discovered proteins at an early stage of research. Additional problems,such as the requirement to produce sufficient amounts of the unknown protein at a purity that allows specific immunisation of mice and testing of the resulting hybridoma clones,also need to be overcome. Here we present a new strategy to isolate rapidly and efficiently monoclonal antibodies against new proteins,for which only sequence information at the DNA level is known. The strategy consists of fusion of the protein to a hexa-His-tag to allow easy purification,production in yeast and insect cells to reduce background immunisation with host cell proteins and the selection of IgG-producing hybridoma cells by flow-cytometric cell sorting using the affinity matrix secretion assay technique. ?? 2005 Elsevier B.V. All rights reserved.
View Publication
Wang X et al. (JUL 2013)
mAbs 5 4 540--4
Generation and characterization of a unique reagent that recognizes a panel of recombinant human monoclonal antibody therapeutics in the presence of endogenous human IgG
Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover,these practices are molecule-specific and so only support one assay for one program at a time. Here,we describe a strategy to generate a unique assay reagent,10C4,that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This panel-specific" feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational
View Publication
Rodrí et al. (NOV 2015)
Journal of Virological Methods 224 1--8
Generation of monoclonal antibodies specific of the postfusion conformation of the Pneumovirinae fusion (F) protein
Paramyxovirus entry into cells requires fusion of the viral and cell membranes mediated by one of the major virus glycoproteins,the fusion (F) glycoprotein which transits from a metastable pre-fusion conformation to a highly stable post-fusion structure during the membrane fusion process. F protein refolding involves large conformational changes of the protein trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) from each protomer into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of the Pneumovirinae F proteins,and as extension of previous work (Palomo et al.,2014),a general strategy was designed to obtain polyclonal and particularly monoclonal antibodies specific of the 6HB motif of the Pneumovirinae fusion protein. The antibodies reported here should assist in the characterization of the structural changes that the F protein of human metapneumovirus or respiratory syncytial virus experiences during the process of membrane fusion.
View Publication
Yew CW and Tan YJ ( 2016)
1426 225--33
Generation of mouse monoclonal antibodies specific to Chikungunya virus using ClonaCell-HY hybridoma cloning kit
Monoclonal antibodies offer high specificity and this makes it an important tool for molecular biology,biochemistry and medicine. Typically,monoclonal antibodies are generated by fusing mouse spleen cells that have been immunized with the desired antigen with myeloma cells to create immortalized hybridomas. Here,we describe the generation of monoclonal antibodies that are specific to Chikungunya virus using ClonaCell-HY system.
View Publication
Li J et al. (MAR 2005)
Clinical Cancer Research 11 6 2195--2204
Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases
PURPOSE: The PRL-3 mRNA is consistently elevated in metastatic samples derived from colorectal cancers. We sought to generate a specific PRL-3 monoclonal antibody (mAb) that might serve as a potential diagnostic marker for colorectal cancer metastasis. EXPERIMENTAL DESIGN: PRL-3 is one of three members (PRL-1,PRL-2,and PRL-3) in a unique protein-tyrosine phosphatase family. Because the three PRLs are 76% to 87% identical in their amino acid sequences,it poses a great challenge to obtain mAbs that are specific for respective phosphatase of regenerating liver (PRL) but not for the other two in the family. We screened over 1,400 hybridoma clones to generate mAbs specific to each PRL member. RESULTS: We obtained two hybridoma clones specifically against PRL-3 and another two clones specifically against PRL-1. These antibodies had been evaluated by several critical tests to show their own specificities and applications. Most importantly,the PRL-3 mAbs were assessed on 282 human colorectal tissue samples (121 normal,17 adenomas,and 144 adenocarcinomas). PRL-3 protein was detected in 11% of adenocarcinoma samples. The PRL-3- and PRL-1-specific mAbs were further examined on 204 human multiple cancer tissues. The differential expressions of PRL-3 and PRL-1 confirmed the mAbs' specificity. CONCLUSIONS: Using several approaches,we show that PRL-3- or PRL-1-specific mAbs react only to their respective antigen. The expression of PRL-3 in textgreater10% of primary colorectal cancer samples indicates that PRL-3 may prime the metastatic process. These mAbs will be useful as markers in clinical diagnosis for assessing tumor aggressiveness.
View Publication
Genes coding evolutionary novel anti-carbohydrate antibodies: studies on anti-Gal production in alpha 1,3galactosyltransferase knock out mice.
This study analyzes the gene repertoire coding for antibodies to an evolutionary novel immunogenic carbohydrate antigen in mice. The alpha-gal epitope (Gal alpha 1-3Gal beta 1-4GlcNAc-R) is an autoantigen,abundantly expressed in wild type mice,but absent in alpha 1,3galactosyltransferase knock-out (KO) mice,where it can induce the production of the anti-Gal antibody. Hybridoma clones secreting anti-Gal were isolated from different mice and their immunoglobulin genes were analyzed. All anti-Gal clones were found to be encoded by the heavy chain gene VH22.1 and light chain gene VK5.1. Moreover,one 'forbidden' anti-Gal clone,produced in a wild type mouse,was also encoded by VH 22.1 and VK 5.1. The genes coding for the different anti-Gal clones were found to contain somatic mutations and different CDR3 domains. These data imply that a highly restricted gene usage combined with junctional diversity and somatic mutations can generate new antibodies that have not been produced in the course of the evolution of a species.
View Publication
Kern J et al. (OCT 2009)
Blood 114 18 3960--7
GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib.
Antiangiogenic effects of the proteasome inhibitor bortezomib were analyzed on tumor xenografts in vivo. Bortezomib strongly inhibited angiogenesis and vascularization in the chicken chorioallantoic membrane. Bortezomib's inhibitory effects on chorioallantoic membrane vascularization were abrogated in the presence of distinct tumor xenografts,thanks to a soluble factor secreted by tumor cells. Through size-exclusion and ion-exchange chromatography as well as mass spectroscopy,we identified GRP-78,a chaperone protein of the unfolded protein response,as being responsible for bortezomib resistance. Indeed,a variety of bortezomib-resistant solid tumor cell lines (PC-3,HRT-18),but not myeloma cell lines (U266,OPM-2),were able to secrete high amounts of GRP-78. Recombinant GRP-78 conferred bortezomib resistance to endothelial cells and OPM-2 myeloma cells. Knockdown of GRP78 gene expression in tumor cells and immunodepletion of GRP-78 protein from tumor cell supernatants restored bortezomib sensitivity. GRP-78 did not bind or complex bortezomib but induced prosurvival signals by phosphorylation of extracellular signal-related kinase and inhibited p53-mediated expression of proapoptotic Bok and Noxa proteins in endothelial cells. From our data,we conclude that distinct solid tumor cells are able to secrete GRP-78 into the tumor microenvironment,thus demonstrating a hitherto unknown mechanism of resistance to bortezomib.
View Publication
Hostetter DR et al. (SEP 2007)
Journal of Biological Chemistry 282 38 27865--74
Hip is a pro-survival substrate of granzyme B
The extended substrate specificity of granzyme B (GrB) was used to identify substrates among the chaperone superfamily. This approach identified Hsp90 and Bag1-L as novel GrB substrates,and an additional GrB cleavage site was identified in the Hsc70/Hsp70-Interacting Protein,Hip. Hsp90,Bag1L,and Hip were validated as GrB substrates in vitro,and mutational analysis confirmed the additional cleavage site in Hip. Because the role of Hip in apoptosis is unknown,its proteolysis by GrB was used as a basis to test whether it has anti-apoptotic activity. Previous work on Hip was limited to in vitro characterization; therefore,it was important to demonstrate Hip cleavage in a physiological context and to show its relevance to natural killer (NK) cell-mediated death. Hip is cleaved at both GrB cleavage sites during NK-mediated cell death in a caspase-independent manner,and its cleavage is due solely to GrB and not other granule components. Furthermore,Hip is not cleaved upon stimulation of the Fas receptor in the Jurkat T-cell line,suggesting that Hip is a substrate unique to GrB. RNA interference-mediated reduction of Hip within the K562 cell line rendered the cells more susceptible to NK cell-mediated lysis,indicating that proteolysis by GrB of Hip contributes to death induction. The small effect of RNA interference-mediated Hip deficiency on cytotoxicity is in agreement with the inherent redundancy of NK cell-mediated cell death. The identification of additional members of the chaperone superfamily as GrB substrates and the validation of Hip as an anti-apoptotic protein contribute to understanding the interplay between stress response and apoptosis.
View Publication
van de Sandt CE et al. (FEB 2014)
Journal of Virology 88 3 1684--93
Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus
In February 2013,zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at present no sustained human-to-human transmission has been reported,a pandemic outbreak of this H7N9 virus is feared. Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the human population,there is interest in identifying other correlates of protection,such as cross-reactive CD8(+) T cells (cytotoxic T lymphocytes [CTLs]) elicited during seasonal influenza A virus infections. These virus-specific CD8(+) T cells are known to recognize conserved internal proteins of influenza A viruses predominantly,but it is unknown to what extent they cross-react with the newly emerging H7N9 virus. Here,we assessed the cross-reactivity of seasonal H3N2 and H1N1 and pandemic H1N1 influenza A virus-specific polyclonal CD8(+) T cells,obtained from HLA-typed study subjects,with the novel H7N9 virus. The cross-reactivity of CD8(+) T cells to H7N9 variants of known influenza A virus epitopes and H7N9 virus-infected cells was determined by their gamma interferon (IFN-γ) response and lytic activity. It was concluded that,apart from recognition of individual H7N9 variant epitopes,CD8(+) T cells to seasonal influenza viruses display considerable cross-reactivity with the novel H7N9 virus. The presence of these cross-reactive CD8(+) T cells may afford some protection against infection with the new virus.
View Publication
Chronopoulou E et al. ( 2014)
1131 47--70
Hybridoma technology for the generation of rodent mAbs via classical fusion
Monoclonal antibodies (mAbs) have proven to be instrumental in the advancement of research,diagnostic,industrial vaccine,and therapeutic applications. The use of mAbs in laboratory protocols has been growing in an exponential fashion for the last four decades. Described herein are methods for the development of highly specific mAbs through traditional hybridoma fusion. For ultimate success,a series of simultaneously initiated protocols are to be undertaken with careful attention to cell health of both the myeloma fusion partner and immune splenocytes. Coordination and attention to detail will enable a researcher with basic tissue culture skills to generate mAbs from immunized rodents to a variety of antigens (including proteins,carbohydrates,DNA,and haptens) (see Note 1). Furthermore,in vivo and in vitro methods used for antigen sensitization of splenocytes prior to somatic fusion are described herein.
View Publication