技术资料
-
J. H. Kim et al. (Jun 2024) Cancer Research Communications 4 6Hemangiosarcoma Cells Promote Conserved Host-derived Hematopoietic Expansion
Hemangiosarcoma and angiosarcoma are soft-tissue sarcomas of blood vessel–forming cells in dogs and humans,respectively. These vasoformative sarcomas are aggressive and highly metastatic,with disorganized,irregular blood-filled vascular spaces. Our objective was to define molecular programs which support the niche that enables progression of canine hemangiosarcoma and human angiosarcoma. Dog-in-mouse hemangiosarcoma xenografts recapitulated the vasoformative and highly angiogenic morphology and molecular characteristics of primary tumors. Blood vessels in the tumors were complex and disorganized,and they were lined by both donor and host cells. In a series of xenografts,we observed that the transplanted hemangiosarcoma cells created exuberant myeloid hyperplasia and gave rise to lymphoproliferative tumors of mouse origin. Our functional analyses indicate that hemangiosarcoma cells generate a microenvironment that supports expansion and differentiation of hematopoietic progenitor populations. Furthermore,gene expression profiling data revealed hemangiosarcoma cells expressed a repertoire of hematopoietic cytokines capable of regulating the surrounding stromal cells. We conclude that canine hemangiosarcomas,and possibly human angiosarcomas,maintain molecular properties that provide hematopoietic support and facilitate stromal reactions,suggesting their potential involvement in promoting the growth of hematopoietic tumors. We demonstrate that hemangiosarcomas regulate molecular programs supporting hematopoietic expansion and differentiation,providing insights into their potential roles in creating a permissive stromal-immune environment for tumor progression. View Publication -
A. Ariolli et al. (May 2024) Frontiers in Cellular and Infection Microbiology 14 3Modeling airway persistent infection of Moraxella catarrhalis and nontypeable Haemophilus influenzae by using human in vitro models
Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are two common respiratory tract pathogens often associated with acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) as well as with otitis media (OM) in children. Although there is evidence that these pathogens can adopt persistence mechanisms such as biofilm formation,the precise means through which they contribute to disease severity and chronicity remains incompletely understood,posing challenges for their effective eradication. The identification of potential vaccine candidates frequently entails the characterization of the host-pathogen interplay in vitro even though this approach is limited by the fact that conventional models do not permit long term bacterial infections. In the present work,by using air-liquid-interface (ALI) human airway in vitro models,we aimed to recreate COPD-related persistent bacterial infections. In particular,we explored an alternative use of the ALI system consisting in the assembly of an inverted epithelium grown on the basal part of a transwell membrane with the aim to enable the functionality of natural defense mechanisms such as mucociliary clearance and cellular extrusion that are usually hampered during conventional ALI infection experiments. The inversion of the epithelium did not affect tissue differentiation and considerably delayed NTHi or Mcat infection progression,allowing one to monitor host-pathogen interactions for up to three weeks. Notably,the use of these models,coupled with confocal and transmission electron microscopy,revealed unique features associated with NTHi and Mcat infection,highlighting persistence strategies including the formation of intracellular bacterial communities (IBCs) and surface-associated biofilm-like structures. Overall,this study demonstrates the possibility to perform long term host-pathogen investigations in vitro with the aim to define persistence mechanisms adopted by respiratory pathogens and individuate potential new vaccine targets. View Publication -
N. Liu et al. (May 2024) Thoracic Cancer 15 18Hypoxia differently regulates the proportion of ALDH hi cells in lung squamous carcinoma H520 and adenocarcinoma A549 cells via the Wnt/β‐catenin pathway
Cancer stem cells (CSCs) are a specific subpopulation of cancer cells with the ability of self‐renewal,infinite proliferation,multidifferentiation and tumorigenicity,and play critical roles in cancer progression and treatment resistance. CSCs are tightly regulated by the tumor microenvironment,such as hypoxia; however,how hypoxia regulates CSCs in non‐small cell lung cancer (NSCLC) remains unclear. The proportion of ALDH hi cells was examined using the Aldefluor assay. Tankyrase inhibitor XAV939 and siRNA were used to inhibit β‐catenin while pcDNA3‐β‐catenin (S33Y) plasmid enhanced the expression of β‐catenin. Western blot was administered for protein detection. The mRNA expression was measured by quantitative real‐time PCR. We found that hypoxia led to an increase in the proportion of ALDH hi cells in lung squamous carcinoma (LUSC) H520 cells,while causing a decrease in the ALDH hi cell proportion in lung adenocarcinoma (LUAD) A549 cells. Similarly,β‐catenin expression was upregulated in H520 cells but downregulated in A549 cells upon exposure to hypoxia. Mechanically,the proportion of ALDH hi cells in both cell lines was decreased by β‐catenin inhibitor or siRNA knockdown,whereas increased after β‐catenin overexpression. Furthermore,hypoxia treatment suppressed E‐cadherin expression in H520 cells and enhanced N‐cadherin and β‐catenin expression,while this effect was completely opposite in A549 cells. The hypoxia‐EMT‐β‐catenin axis functions as an important regulator for the proportion of CSCs in NSCLC and could potentially be explored as therapeutic targets in the future. View Publication -
R. Gélinas et al. (Apr 2024) Frontiers in Genetics 15Human induced pluripotent stem cells (hiPSCs) derived cells reflect tissue specificity found in patients with Leigh syndrome French Canadian variant (LSFC)
Leigh syndrome French Canadian type (LSFC) is a recessive neurodegenerative disease characterized by tissue-specific deficiency in cytochrome c oxidase (COX),the fourth complex in the oxidative phosphorylation system. LSFC is caused by mutations in the leucine rich pentatricopeptide repeat containing gene ( LRPPRC ). Most LSFC patients in Quebec are homozygous for an A354V substitution that causes a decrease in the expression of the LRPPRC protein. While LRPPRC is ubiquitously expressed and is involved in multiple cellular functions,tissue-specific expression of LRPPRC and COX activity is correlated with clinical features. In this proof-of-principle study,we developed human induced pluripotent stem cell (hiPSC)-based models from fibroblasts taken from a patient with LSFC,homozygous for the LRPPRC *354V allele,and from a control,homozygous for the LRPPRC *A354 allele. Specifically,for both of these fibroblast lines we generated hiPSC,hiPSC-derived cardiomyocytes (hiPSC-CMs) and hepatocyte-like cell (hiPSC-HLCs) lines,as well as the three germ layers. We observed that LRPPRC protein expression is reduced in all cell lines/layers derived from LSFC patient compared to control cells,with a reduction ranging from ∼70% in hiPSC-CMs to undetectable levels in hiPSC-HLC,reflecting tissue heterogeneity observed in patient tissues. We next performed exploratory analyses of these cell lines and observed that COX protein expression was reduced in all cell lines derived from LSFC patient compared to control cells. We also observed that mutant LRPPRC was associated with altered expression of key markers of endoplasmic reticulum stress response in hiPSC-HLCs but not in other cell types that were tested. While this demonstrates feasibility of the approach to experimentally study genotype-based differences that have tissue-specific impacts,this study will need to be extended to a larger number of patients and controls to not only validate the current observations but also to delve more deeply in the pathogenic mechanisms of LSFC. View Publication -
U. Cuhadar et al. (May 2024) Cell Reports 43 5Activity-driven synaptic translocation of LGI1 controls excitatory neurotransmission
The fine control of synaptic function requires robust trans-synaptic molecular interactions. However,it remains poorly understood how trans-synaptic bridges change to reflect the functional states of the synapse. Here,we develop optical tools to visualize in firing synapses the molecular behavior of two trans-synaptic proteins,LGI1 and ADAM23,and find that neuronal activity acutely rearranges their abundance at the synaptic cleft. Surprisingly,synaptic LGI1 is primarily not secreted,as described elsewhere,but exo- and endocytosed through its interaction with ADAM23. Activity-driven translocation of LGI1 facilitates the formation of trans-synaptic connections proportionally to the history of activity of the synapse,adjusting excitatory transmission to synaptic firing rates. Accordingly,we find that patient-derived autoantibodies against LGI1 reduce its surface fraction and cause increased glutamate release. Our findings suggest that LGI1 abundance at the synaptic cleft can be acutely remodeled and serves as a critical control point for synaptic function. View Publication -
A. S. Shankar et al. (Apr 2024) Transplant International 37Interactions of the Immune System with Human Kidney Organoids
Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC),which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover,immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids,which will advance the use of kidney organoids for transplantation research. View Publication -
A. Singh et al. (Apr 2024) Scientific Reports 14A high efficiency precision genome editing method with CRISPR in iPSCs
The use of genetic engineering to generate point mutations in induced pluripotent stem cells (iPSCs) is essential for studying a specific genetic effect in an isogenic background. We demonstrate that a combination of p53 inhibition and pro-survival small molecules achieves a homologous recombination rate higher than 90% using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in human iPSCs. Our protocol reduces the effort and time required to create isogenic lines. View Publication -
B. Yuan et al. (Apr 2024) BMC Biology 22 4Modulation of the microhomology-mediated end joining pathway suppresses large deletions and enhances homology-directed repair following CRISPR-Cas9-induced DNA breaks
CRISPR-Cas9 genome editing often induces unintended,large genomic rearrangements,posing potential safety risks. However,there are no methods for mitigating these risks. Using long-read individual-molecule sequencing (IDMseq),we found the microhomology-mediated end joining (MMEJ) DNA repair pathway plays a predominant role in Cas9-induced large deletions (LDs). We targeted MMEJ-associated genes genetically and/or pharmacologically and analyzed Cas9-induced LDs at multiple gene loci using flow cytometry and long-read sequencing. Reducing POLQ levels or activity significantly decreases LDs,while depleting or overexpressing RPA increases or reduces LD frequency,respectively. Interestingly,small-molecule inhibition of POLQ and delivery of recombinant RPA proteins also dramatically promote homology-directed repair (HDR) at multiple disease-relevant gene loci in human pluripotent stem cells and hematopoietic progenitor cells. Our findings reveal the contrasting roles of RPA and POLQ in Cas9-induced LD and HDR,suggesting new strategies for safer and more precise genome editing. The online version contains supplementary material available at 10.1186/s12915-024-01896-z. View Publication -
A. Kuzmina et al. (Apr 2024) PLOS Pathogens 20 4Direct and indirect effects of CYTOR lncRNA regulate HIV gene expression
The implementation of antiretroviral therapy (ART) has effectively restricted the transmission of Human Immunodeficiency Virus (HIV) and improved overall clinical outcomes. However,a complete cure for HIV remains out of reach,as the virus persists in a stable pool of infected cell reservoir that is resistant to therapy and thus a main barrier towards complete elimination of viral infection. While the mechanisms by which host proteins govern viral gene expression and latency are well-studied,the emerging regulatory functions of non-coding RNAs (ncRNA) in the context of T cell activation,HIV gene expression and viral latency have not yet been thoroughly explored. Here,we report the identification of the Cytoskeleton Regulator (CYTOR) long non-coding RNA (lncRNA) as an activator of HIV gene expression that is upregulated following T cell stimulation. Functional studies show that CYTOR suppresses viral latency by directly binding to the HIV promoter and associating with the cellular positive transcription elongation factor (P-TEFb) to activate viral gene expression. CYTOR also plays a global role in regulating cellular gene expression,including those involved in controlling actin dynamics. Depletion of CYTOR expression reduces cytoplasmic actin polymerization in response to T cell activation. In addition,treating HIV-infected cells with pharmacological inhibitors of actin polymerization reduces HIV gene expression. We conclude that both direct and indirect effects of CYTOR regulate HIV gene expression. View Publication -
X. Zhang et al. (Apr 2024) iScience 27 5Characterizing fitness and immune escape of SARS-CoV-2 EG.5 sublineage using elderly serum and nasal organoid
SARS-CoV-2 Omicron variant has evolved into sublineages. Here,we compared the neutralization susceptibility and viral fitness of EG.5.1 and XBB.1.9.1. Serum neutralization antibody titer against EG.5.1 was 1.71-fold lower than that for XBB.1.9.1. However,there was no significant difference in virus replication between EG.5.1 and XBB.1.9.1 in human nasal organoids and TMPRSS2/ACE2 over-expressing A549 cells. No significant difference was observed in competitive fitness and cytokine/chemokine response between EG.5.1 and XBB.1.9.1. Both EG.5.1 and XBB.1.9.1 replicated more robustly in the nasal organoid from a younger adult than that from an older adult. Our findings suggest that enhanced immune escape contributes to the dominance of EG.5.1 over earlier sublineages. The combination of population serum susceptibility testing and viral fitness evaluation with nasal organoids may hold promise in risk assessment of upcoming variants. Utilization of serum specimens and nasal organoid derived from older adults provides a targeted risk assessment for this vulnerable population. Subject areas: Immunology,Immune response,Virology View Publication -
S. A. Awad et al. (Apr 2024) Cell Reports Medicine 5 5Integrated drug profiling and CRISPR screening identify BCR::ABL1-independent vulnerabilities in chronic myeloid leukemia
BCR::ABL1-independent pathways contribute to primary resistance to tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) and play a role in leukemic stem cell persistence. Here,we perform ex vivo drug screening of CML CD34 + leukemic stem/progenitor cells using 100 single drugs and TKI-drug combinations and identify sensitivities to Wee1,MDM2,and BCL2 inhibitors. These agents effectively inhibit primitive CD34 + CD38 − CML cells and demonstrate potent synergies when combined with TKIs. Flow-cytometry-based drug screening identifies mepacrine to induce differentiation of CD34 + CD38 − cells. We employ genome-wide CRISPR-Cas9 screening for six drugs,and mediator complex,apoptosis,and erythroid-lineage-related genes are identified as key resistance hits for TKIs,whereas the Wee1 inhibitor AZD1775 and mepacrine exhibit distinct resistance profiles. KCTD5,a consistent TKI-resistance-conferring gene,is found to mediate TKI-induced BCR::ABL1 ubiquitination. In summary,we delineate potential mechanisms for primary TKI resistance and non-BCR::ABL1-targeting drugs,offering insights for optimizing CML treatment. View Publication -
D. J. Coleman et al. (Mar 2024) iScience 27 4Pharmacological inhibition of RAS overcomes FLT3 inhibitor resistance in FLT3-ITD+ AML through AP-1 and RUNX1
AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism,we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse,which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover,FLT3i induces the upregulation of signaling genes,and we show that multiple cytokines,including interleukin-3 (IL-3),can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding,which is counteracted by IL-3. However,cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier. Subject area: Pharmacy,Molecular biology View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号