Warmflash A et al. (AUG 2014)
Nature methods 11 8 847--54
A method to recapitulate early embryonic spatial patterning in human embryonic stem cells.
Embryos allocate cells to the three germ layers in a spatially ordered sequence. Human embryonic stem cells (hESCs) can generate the three germ layers in culture; however,differentiation is typically heterogeneous and spatially disordered. We show that geometric confinement is sufficient to trigger self-organized patterning in hESCs. In response to BMP4,colonies reproducibly differentiated to an outer trophectoderm-like ring,an inner ectodermal circle and a ring of mesendoderm expressing primitive-streak markers in between. Fates were defined relative to the boundary with a fixed length scale: small colonies corresponded to the outer layers of larger ones. Inhibitory signals limited the range of BMP4 signaling to the colony edge and induced a gradient of Activin-Nodal signaling that patterned mesendodermal fates. These results demonstrate that the intrinsic tendency of stem cells to make patterns can be harnessed by controlling colony geometries and provide a quantitative assay for studying paracrine signaling in early development.
View Publication
Y. Han et al. (Apr 2024)
The EMBO Journal 43 10
A Mettl16/m 6 A/ mybl2b /Igf2bp1 axis ensures cell cycle progression of embryonic hematopoietic stem and progenitor cells
Prenatal lethality associated with mouse knockout of Mettl16,a recently identified RNA N6-methyladenosine (m 6 A) methyltransferase,has hampered characterization of the essential role of METTL16-mediated RNA m 6 A modification in early embryonic development. Here,using cross-species single-cell RNA sequencing analysis,we found that during early embryonic development,METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish,proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest,an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m 6 A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA,likely due to lost binding by the m 6 A reader Igf2bp1 in vivo. Moreover,we found that the METTL16-m 6 A- MYBL2 -IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively,our findings elucidate the critical function of METTL16-mediated m 6 A modification in HSPC cell cycle progression during early embryonic development.
View Publication
L. Koenig et al. (May 2025)
Communications Biology 8
A microfluidic bone marrow chip for the safety profiling of biologics in pre-clinical drug development
Hematologic adverse events are common dose-limiting toxicities in drug development. Classical animal models for preclinical safety assessment of immunotherapies are often limited due to insufficient cross-reactivity with non-human homologous proteins,immune system differences,and ethical considerations. Therefore,we evaluate a human bone marrow (BM) microphysiological system (MPS) for its ability to predict expected hematopoietic liabilities of immunotherapeutics. The BM-MPS consists of a closed microfluidic circuit containing a ceramic scaffold covered with human mesenchymal stromal cells and populated with human BM-derived CD34+ cells in chemically defined growth factor-enriched media. The model supports on-chip differentiation of erythroid,myeloid and NK cells from CD34+ cells over 31 days. The hematopoietic lineage balance and output is responsive to pro-inflammatory factors and cytokines. Treatment with a transferrin receptor-targeting IgG1 antibody results in inhibition of on-chip erythropoiesis. The immunocompetence of the chip is established by the addition of peripheral blood T cells in a fully autologous setup. Treatment with T cell bispecific antibodies induces T cell activation and target cell killing consistent with expected on-target off-tumor toxicities. In conclusion,this study provides a proof-of-concept that this BM-MPS is applicable for in vitro hematopoietic safety profiling of immunotherapeutics. Subject terms: Biologics,Haematopoiesis,Lab-on-a-chip,Drug safety
View Publication
C. Quintard et al. (Feb 2024)
Nature Communications 15
A microfluidic platform integrating functional vascularized organoids-on-chip
The development of vascular networks in microfluidic chips is crucial for the long-term culture of three-dimensional cell aggregates such as spheroids,organoids,tumoroids,or tissue explants. Despite rapid advancement in microvascular network systems and organoid technologies,vascularizing organoids-on-chips remains a challenge in tissue engineering. Most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical set-ups. Considering these constraints,we develop a platform to establish and monitor the formation of endothelial networks around mesenchymal and pancreatic islet spheroids,as well as blood vessel organoids generated from pluripotent stem cells,cultured for up to 30 days on-chip. We show that these networks establish functional connections with the endothelium-rich spheroids and vascular organoids,as they successfully provide intravascular perfusion to these structures. We find that organoid growth,maturation,and function are enhanced when cultured on-chip using our vascularization method. This microphysiological system represents a viable organ-on-chip model to vascularize diverse biological 3D tissues and sets the stage to establish organoid perfusions using advanced microfluidics. Subject terms: Stem-cell biotechnology,Tissue engineering,Biomedical engineering,Induced pluripotent stem cells,Microfluidics
View Publication
A Micropatterned Human Pluripotent Stem Cell-Based Ventricular Cardiac Anisotropic Sheet for Visualizing Drug-Induced Arrhythmogenicity.
A novel cardiomimetic biohybrid material,termed as the human ventricular cardiac anisotropic sheet (hvCAS) is reported. Well-characterized human pluripotent stem-cell-derived ventricular cardiomyocytes are strategically aligned to reproduce key electrophysiological features of native human ventricle,which,along with specific selection criteria,allows for a direct visualization of arrhythmic spiral re-entry and represents a revolutionary tool to assess preclinical drug-induced arrhythmogenicity.
View Publication
Inamdar AA et al. (JAN 2012)
Mycopathologia 173 1 13--20
A Model to Evaluate the Cytotoxicity of the Fungal Volatile Organic Compound 1-octen-3-ol in Human Embryonic Stem Cells
Microbial growth in damp indoor environments has been correlated with risks to human health. This study was aimed to determine the cytotoxicity of 1-octen-3-ol (mushroom alcohol")�
View Publication
Razaq MA et al. (MAR 2017)
British journal of haematology 176 6 971--983
A molecular roadmap of definitive erythropoiesis from human induced pluripotent stem cells.
Human induced pluripotent stem cells (hiPSCs) are being considered for use in understanding haematopoietic disorders and as a potential source of in vitro manufactured red cells. Here,we show that hiPSCs are able to recapitulate various stages of developmental erythropoiesis. We show that primitive erythroblasts arise first,express CD31(+) with CD235a(+),embryonic globins and red cell markers,but fail to express the hallmark red cell transcripts of adult erythropoiesis. When hiPSC-derived CD45(+) CD235a(-) haematopoietic progenitors are isolated on day 12 and further differentiated on OP9 stroma,they selectively express CD36(+) and CD235a(+),adult erythroid transcripts for transcription factors (e.g.,BCL11A,KLF1) and fetal/adult globins (HBG1/2,HBB). Importantly,hiPSC- and cord-derived CD36(+) CD235a(+) erythroblasts show a striking homology by transcriptome array profiling (only 306 transcripts with a 2Log fold change<1textperiodcentered5- or 2textperiodcentered8-fold). Phenotypic and transcriptome profiling of CD45(+) CD117(+) CD235a(+) pro-erythroblasts and terminally differentiated erythroblasts is also provided,including evidence of a HbF (fetal) to HbA (adult) haemoglobin switch and enucleation,that mirrors their definitive erythroblast cord-derived counterparts. These findings provide a molecular roadmap of developmental erythropoiesis from hiPSC sources at several critical stages,but also helps to inform on their use for clinical applications and modelling human haematopoietic disease.
View Publication
A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients.
We evaluated a cocktail of HLA-A2-specific peptides including heteroclitic XBP1 US184-192 (YISPWILAV),heteroclitic XBP1 SP367-375 (YLFPQLISV),native CD138260-268 (GLVGLIFAV) and native CS1239-247 (SLFVLGLFL),for their ability to elicit multipeptide-specific cytotoxic T lymphocytes (MP-CTLs) using T cells from smoldering multiple myeloma (SMM) patients. Our results demonstrate that MP-CTLs generated from SMM patients' T cells show effective anti-MM responses including CD137 (4-1BB) upregulation,CTL proliferation,interferon-γ production and degranulation (CD107a) in an HLA-A2-restricted and peptide-specific manner. Phenotypically,we observed increased total CD3(+)CD8(+) T cells (textgreater80%) and cellular activation (CD69(+)) within the memory SMM MP-CTL (CD45RO(+)/CD3(+)CD8(+)) subset after repeated multipeptide stimulation. Importantly,SMM patients could be categorized into distinct groups by their level of MP-CTL expansion and antitumor activity. In high responders,the effector memory (CCR7(-)CD45RO(+)/CD3(+)CD8(+)) T-cell subset was enriched,whereas the remaining responders' CTL contained a higher frequency of the terminal effector (CCR7(-)CD45RO(-)/CD3(+)CD8(+)) subset. These results suggest that this multipeptide cocktail has the potential to induce effective and durable memory MP-CTL in SMM patients. Therefore,our findings provide the rationale for clinical evaluation of a therapeutic vaccine to prevent or delay progression of SMM to active disease.
View Publication
Chen W et al. (JUL 2006)
Blood 108 2 669--77
A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy.
The 2 most frequent human MLL hematopoietic malignancies involve either AF4 or AF9 as fusion partners; each has distinct biology but the role of the fusion partner is not clear. We produced Mll-AF4 knock-in (KI) mice by homologous recombination in embryonic stem cells and compared them with Mll-AF9 KI mice. Young Mll-AF4 mice had lymphoid and myeloid deregulation manifest by increased lymphoid and myeloid cells in hematopoietic organs. In vitro,bone marrow cells from young mice formed unique mixed pro-B lymphoid (B220(+)CD19(+)CD43(+)sIgM(-),PAX5(+),TdT(+),IgH rearranged)/myeloid (CD11b/Mac1(+),c-fms(+),lysozyme(+)) colonies when grown in IL-7- and Flt3 ligand-containing media. Mixed lymphoid/myeloid hyperplasia and hematologic malignancies (most frequently B-cell lymphomas) developed in Mll-AF4 mice after prolonged latency; long latency to malignancy indicates that Mll-AF4-induced lymphoid/myeloid deregulation alone is insufficient to produce malignancy. In contrast,young Mll-AF9 mice had predominately myeloid deregulation in vivo and in vitro and developed myeloid malignancies. The early onset of distinct mixed lymphoid/myeloid lineage deregulation in Mll-AF4 mice shows evidence for both instructive" and "noninstructive" roles for AF4 and AF9 as partners in MLL fusion genes. The molecular basis for "instruction" and secondary cooperating mutations can now be studied in our Mll-AF4 model."
View Publication
A. Becerra-Calixto et al. (Oct 2025)
Journal of Neuroinflammation 22
A neuroimmune cerebral assembloid model to study the pathophysiology of familial Alzheimer’s disease
Alzheimer’s disease (AD) is the leading cause of dementia globally. The accumulation of amyloid and tau proteins,neuronal cell death and neuroinflammation are seen with AD progression,resulting in memory and cognitive impairment. Microglia are crucial for AD progression as they engage with neural cells and protein aggregates to regulate amyloid pathology and neuroinflammation. Recent studies indicate that microglia contribute to the propagation of amyloid beta (Aβ) via their immunomodulatory functions including Aβ phagocytosis and inflammatory cytokine production. Three-dimensional cell culture techniques provide the opportunity to study pathophysiological changes in AD in human-derived samples that are difficult to recapitulate in animal models (e.g.,transgenic mice). However,these models often lack immune cells such as microglia,which play a critical role in AD pathophysiology. In this study,we developed a neuroimmune assembloid model by integrating cerebral organoids (COs) with induced microglia-like cells (iMGs) derived from human induced pluripotent stem cells from familial AD patient with PSEN2 mutation. After 120 days in culture,we found that iMGs were successfully integrated within the COs. Interestingly,our assembloids displayed histological,functional and transcriptional features of the pro-inflammatory environment seen in AD,including amyloid plaque-like and neurofibrillary tangle-like structures,reduced microglial phagocytic capability,and enhanced neuroinflammatory and apoptotic gene expression. In conclusion,our neuroimmune assembloid model effectively replicates the inflammatory phenotype and amyloid pathology seen in AD. The online version contains supplementary material available at 10.1186/s12974-025-03544-x.
View Publication
Scalzo-Inguanti K et al. (MAY 2017)
Journal of leukocyte biology
A neutralizing anti-G-CSFR antibody blocks G-CSF-induced neutrophilia without inducing neutropenia in nonhuman primates.
Neutrophils are the most abundant WBCs and have an essential role in the clearance of pathogens. Tight regulation of neutrophil numbers and their recruitment to sites of inflammation is critical in maintaining a balanced immune response. In various inflammatory conditions,such as rheumatoid arthritis,vasculitis,cystic fibrosis,and inflammatory bowel disease,increased serum G-CSF correlates with neutrophilia and enhanced neutrophil infiltration into inflamed tissues. We describe a fully human therapeutic anti-G-CSFR antibody (CSL324) that is safe and well tolerated when administered via i.v. infusion to cynomolgus macaques. CSL324 was effective in controlling G-CSF-mediated neutrophilia when administered either before or after G-CSF. A single ascending-dose study showed CSL324 did not alter steady-state neutrophil numbers,even at doses sufficient to completely prevent G-CSF-mediated neutrophilia. Weekly infusions of CSL324 (%10 mg/kg) for 3 wk completely neutralized G-CSF-mediated pSTAT3 phosphorylation without neutropenia. Moreover,repeat dosing up to 100 mg/kg for 12 wk did not result in neutropenia at any point,including the 12-wk follow-up after the last infusion. In addition,CSL324 had no observable effect on basic neutrophil functions,such as phagocytosis and oxidative burst. These data suggest that targeting G-CSFR may provide a safe and effective means of controlling G-CSF-mediated neutrophilia as observed in various inflammatory diseases.
View Publication