技术资料
-
(Aug 2025) Nature Communications 16Integrative multi-omics reveals a regulatory and exhausted T-cell landscape in CLL and identifies galectin-9 as an immunotherapy target
T-cell exhaustion contributes to immunotherapy failure in chronic lymphocytic leukemia (CLL). Here,we analyze T cells from CLL patients’ blood,bone marrow,and lymph nodes,as well as from a CLL mouse model,using single-cell RNA sequencing,mass cytometry,and tissue imaging. T cells in CLL lymph nodes show the most distinct profiles,with accumulation of regulatory T cells and CD8+ T cells in various exhaustion states,including precursor (TPEX) and terminally exhausted (TEX) cells. Integration of T-cell receptor sequencing data and use of the predicTCR classifier suggest an enrichment of CLL-reactive T cells in lymph nodes. Interactome studies reveal potential immunotherapy targets,notably galectin-9,a TIM3 ligand. Inhibiting galectin-9 in mice reduces disease progression and TIM3+ T cells. Galectin-9 expression also correlates with worse survival in CLL and other cancers,suggesting its role in immune evasion and potential as a therapeutic target. Multi-omics can be used to characterise tumour and immune cell populations. Here the authors use multi-omics to characterise CLL blood and tissue samples and use prediction models for CLL TCR specificity and implicate interactions between galectin-9 and TIM3 as involved in CLL immune escape and propose galectin-9 as a possible immunotherapy target. View Publication -
(Aug 2025) RMD Open 11 3TNF inhibitors affect the induction and maintenance of spike-specific B-cell responses after mRNA vaccination
AbstractObjectivesTumour necrosis factor inhibitors (TNFi) are widely used and effective as treatment for immune-mediated inflammatory diseases (IMIDs). However,TNFi therapy causes a faster waning of antibody responses following vaccination. The underlying cause by which TNFi affect humoral immunity remains to be elucidated. The formation of long-lasting,high-affinity antibodies after vaccination results from germinal centre (GC)-derived,T cell-dependent B-cell responses. Therefore,this study investigated how TNFi affect the formation and maintenance of antigen-specific B- and CD4+ T-cell responses following SARS-CoV-2 mRNA vaccination.MethodsSARS-CoV-2 spike-specific B-cell responses were characterised using spectral flow cytometry. Spike-specific CD4+ T cells were measured using an activation-induced marker assay. 15 patients with inflammatory bowel disease (IBD) treated with TNFi were compared with 9 IBD patients without systemic immunosuppression and 10 healthy controls.ResultsSpike-specific CD4+T-cell frequency and phenotype,including T follicular helper cells,were not affected by TNFi. Total spike-specific B-cell frequencies were reduced in TNFi-treated patients. Deep phenotyping revealed lower IgG+memory B-cell frequencies in TNFi-treated patients 3–6 months after vaccination. These data were confirmed in TNFi-treated rheumatoid arthritis patients. Interestingly,already at day 7 after the second vaccination,TNFi therapy reduced the induction of class-switched CD11c- CD71+activated B cells,which are believed to be GC-derived. Conversely,CD11c+B cells,associated with extrafollicular B-cell responses,were not affected by TNFi therapy.ConclusionsThese data suggest that TNFi therapy affects the differentiation of GC-derived B cells,which may explain its effect on humoral immune responses. View Publication -
(Jul 2025) European Journal of Immunology 55 8Spatial Organisation of Tumour cDC1 States Correlates with Effector and Stem‐Like CD8+ T Cells Location
ABSTRACTCD8+ T cells are central to targeting and eliminating cancer cells. Their function is critically supported by type 1 conventional dendritic cells (cDC1s),which both prime antigen‐specific CD8+ T cells in tumour‐draining lymph nodes (tdLNs) and sustain primed CD8+ T cells within tumours. Despite their importance,the spatiotemporal organisation of cDC1s within tumours and their diverse functional roles remain poorly understood. Here,we use scRNAseq and unbiased spatial analysis to construct a detailed map of cDC1 states and distribution within immunogenic mouse tumours during CD8+ T‐cell‐mediated rejection. We reveal two distinct cDC1 activation states characterised by differential expression of genes linked to anti‐tumour immunity,including Cxcl9 and Il12b. Strikingly,Il12b‐expressing cDC1s are CCR7+ and enriched at tumour borders,where they closely associate with stem‐like TCF1+ CD8+ T cells. In contrast,CCR7– Cxcl9‐expressing cDC1s are preferentially found within the tumour parenchyma alongside effector CD8+ T cells. Analysis of a published dataset of human tumours similarly reveals a spatial association between CCR7+ cDC1 and stem‐like TCF1+ CD8+ T cells. These findings uncover a highly spatially coordinated interaction between cDC1s and CD8+ T cells within tumours,shedding light on the intricate cellular dynamics that underpin effective anti‐tumour immunity. Using scRNAseq and spatial analysis,we analyse cDC1 states and spatial distribution in tumours during immune‐mediated rejection. We identify two cDC1 activation states,each occupying different regions and associated with distinct CD8+ T cell populations. This reveals the spatial organisation of cDC1 states that may be key to anti‐tumour immunity. View Publication -
(Jul 2025) Frontiers in Immunology 16C-reactive protein induced T cell activation is an indirect monocyte-dependent mechanism involving the CD80/CD28 pathway
IntroductionT cells are major components of the immune system. Their activation requires interaction between the T cell receptor and co-stimulatory molecules,crucial during infection,inflammation,and allogeneic rejection. Monomeric CRP (mCRP) is a known modulator of inflammation and particularly the innate immune response,however its interaction with T cells as part of the adaptive immune response remains unclear.MethodsPeripheral blood mononuclear cells (PBMC) and T cells were isolated. Flow cytometric analysis was conducted to evaluate Fcγ receptor CD16 expression on T cells,the binding of CRP to T cells,and its impact on proliferation and apoptosis. T cell activation was assessed after 1,2,3,5 and 7 days by assessing CD69 and CD25 expression,and under various conditions including coculture with monocytes and several inhibitory factors.ResultsT cells express CD16 that binds mCRP in a concentration-dependent manner,and particularly on activated T cells. While mCRP reduces apoptosis and accelerates proliferation in T cells,it does not independently activate them. However,activation of monocytes by mCRP leads to T cell activation,indicating a direct cell to cell interaction during CRP-induced activation. This effect could be alleviated by inhibition of the CD80/CD28 pathway.ConclusionCRP does not activate T Cells directly but via PI3-kinase-dependent activation of monocytes and subsequent CD80/CD28 cell to cell contact. The findings suggest the effects of CRP on T cells depend on their environment and the presence of other proinflammatory agents. View Publication -
(Jul 2025) Stem Cell Research & Therapy 16Apoptotic vesicles of mesenchymal stem cells promote M2 polarization and alleviate early-onset preeclampsia via miR-191-5p
BackgroundMacrophages play a crucial role in the development of early-onset preeclampsia (EOPE),which may be closely associated with an imbalance in macrophage M1/M2 polarization. Mesenchymal stem cell (MSC)-derived apoptotic vesicles (apoVs) have anti-inflammatory,tissue repair,and immunomodulatory functions. MSC-apoVs may ameliorate EOPE by regulating macrophage polarization,but the underlying mechanisms remain to be clarified.MethodsMacrophage infiltration and M1/M2 polarization were first analyzed in the placentas of PE patients and normal pregancies to identify macrophage alterations in EOPE placentas. MSC-apoVs were extracted and characterized. The effects of MSC-apoVs on macrophage polarization and trophoblasts invasion were validated in vivo and in vitro. miRNA transcriptomic sequencing of MSC-apoVs was conducted to identify key miRNAs involved in macrophage M2 polarization and to investigate upstream and downstream regulation factors,which were further validated in vivo and in vitro.ResultsThe proportion of M2 macrophages was significantly reduced in EOPE placentas. MSC-apoVs carrying high levels of miR-191-5p recruited macrophages,downregulated CDK6 protein expression,stabilized mitochondrial membrane potential (MMP),and promoted M2 polarization of macrophages. This enhanced the invasion of trophoblasts and improved EOPE pregnancy outcomes in mice,including reduced blood pressure,decreased urine protein,and improved embryo quality. Overexpression of miR-191-5p mimics in MSC-apoVs further alleviated EOPE-related symptoms,whereas inhibition of miR-191-5p reduced the therapeutic effect of MSC-apoVs. Further experiments confirmed that M2 macrophages polarized by MSC-apoVs promote trophoblasts invasion by secreting platelet-derived growth factor-AB (PDGF-AB),which binds to platelet-derived growth factor receptor-beta (PDGFR-β) on trophoblasts,directly activating the downstream PI3K-AKT-mTOR signaling pathway,thereby improving EOPE.ConclusionOur findings reveal the crucial role of M2 macrophages in the pathogenesis of EOPE. MSC-apoVs with high miR-191-5p recruit macrophages,downregulate CDK6,stabilize MMP,and promote M2 polarization,increasing PDGF-AB secretion,which enhances trophoblasts invasion and thereby treat EOPE. Therefore,MSC-apoVs therapy may serve as a promising strategy to improve the prognosis of EOPE.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-025-04546-5. View Publication -
(Jun 2025) Microorganisms 13 7DNA from Lactobacillus paragasseri SBT2055 Activates Plasmacytoid Dendritic Cells and Induces IFN-α via TLR9
Previously,we reported that Lactobacillus paragasseri SBT2055 (LG2055) activates plasmacytoid dendritic cells (pDCs) and induces interferon alpha (IFN-α) in vitro. Our clinical trial suggested that LG2055 intake may enhance pDC activity,supporting immune maintenance and reducing subjective common cold symptoms. However,the precise mechanisms remain unclear. In this study,we investigated how LG2055 engages with pDCs to stimulate IFN-α production. We evaluated LG2055-induced pDC activation using flow cytometry,ELISA,and phagocytosis assays. Human peripheral blood mononuclear cells (PBMCs) were stimulated with LG2055 and its components to evaluate immune responses. An in vitro M cell model was used to examine LG2055 translocation. We found that DNA extracted from LG2055 activated pDCs and enhanced IFN-α production via Toll-like receptor 9 (TLR9). Phagocytosis assays demonstrated that LG2055 DNA was internalized by PBMC-derived pDCs,enabling TLR9-mediated signaling. Additionally,LG2055 translocated across M cells in vitro,suggesting potential transport into Peyer’s patches,where it may interact with pDCs. These findings demonstrate that intestinal LG2055 can translocate across M cells,interact with pDCs,and exert immune-stimulatory effects to enhance host antiviral immunity. This study provides mechanistic insight into how dietary components support immune health and could inform the development of novel functional foods or therapeutic strategies. View Publication -
(Jul 2025) Frontiers in Pharmacology 16Calycosin suppresses the activating effect of granulocyte-macrophage-colony-stimulating factor-producing T helper cells on macrophages in experimental atherosclerosis
BackgroundT cells are contributors to atherosclerosis pathogenesis. Granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells,a specialized helper T cell subset that highly expresses GM-CSF but lacks other helper T cell markers,could exacerbate atherosclerosis development. Calycosin has been reported to suppress atherosclerosis progression. However,the effect of calycosin on ThGM cells is unknown. This study was designed to test the calycosin-induced impact on the pro-atherosclerotic function of ThGM cells in a mouse atherosclerosis model.MethodsApolipoprotein E knockout (ApoE−/−) mice were fed a high-fat diet and calycosin. The phenotype and cytokine expression of aortic ThGM cells were assessed by flow cytometry. Calycosin-derived influences on ThGM cell differentiation,proliferation,and function were determined by flow cytometry,quantitative RT-PCR,Immunoblotting,gene silencing assays,and co-culture with macrophages.ResultsAortic ThGM cell frequency was attenuated after calycosin administration. Live aortic ThGM cells,phenotypically featuring CD4+CCR6−CCR8−CXCR3−CCR10+,showed slower proliferation and weaker macrophage-activating capability in calycosin-treated mice. Besides,calycosin repressed in vitro ThGM cell differentiation and subsequently impaired ThGM cell-mediated macrophage activation,oxidized low-density lipoprotein (Ox-LDL) uptake,and foam cell formation. Importantly,calycosin upregulated nuclear receptor subfamily 4 group A member 3 (NR4A3) in ThGM cells. NR4A3 silencing partially restored the function of calycosin-treated ThGM cells.ConclusionCalycosin inhibits ThGM cell activity to suppress ThGM-cell-mediated activation of pro-atherosclerotic macrophages to ultimately ameliorate atherosclerosis progression. Therefore,we revealed a novel mechanism by which calycosin protects against atherosclerosis. View Publication -
(Jul 2025) Molecular Therapy. Nucleic Acids 36 3Sustained and specific multiplexed immune checkpoint modulation in CAR T cells induced by targeted epigenome editing
Engineered T cells equipped with a chimeric antigen receptor (CAR) have shown tremendous clinical success,but tumor-mediated stimulation of T cell inhibitory receptors leads to exhaustion,hampering durable remission in patients. Mitigation of this effect via checkpoint inhibition or genome editing to knockout the genes encoding for these receptors has shown promise. Yet,the side effects of these procedures require better alternatives. Targeted epigenome editing offers a potent strategy to alter gene expression without DNA modifications. Its hit-and-run mechanism enables durable,multiplexed modulation of gene expression with greater safety. Here,we describe multiplexed epigenome editing inactivation of two critical-exhaustion-related genes,PDCD1 and LAG3,both in primary human T cells and in prostate-cancer-specific CAR T cells. Epigenetically modified CAR T cells are indistinguishable from parental cells across a range of functional assays. Although the model does not fully mimic T cell exhaustion,limiting functional assessment,gene silencing remains durable across multiple divisions and repeated CAR stimulations. Furthermore,transcriptomic analysis revealed minimal off-target effects not directly attributable to the effectors used. We demonstrate that targeted epigenome editing is effective and safe for multiplexed gene inhibition and holds potential in engineering CAR T cells with enhanced and customizable features. Graphical abstract Epigenome editing is used to engineer CAR T cells targeting prostate cancer by stably silencing the PDCD1 and LAG3 genes,which encode key inhibitory checkpoint receptors. This DNA break-free approach enhances safety by avoiding genomic damage and holds promise as a next-generation strategy for safer,more durable cancer immunotherapy. View Publication -
(Jul 2025) Scientific Reports 15Natural killer cells from endurance-trained older adults show improved functional and metabolic responses to adrenergic blockade and mTOR inhibition
Aging is associated with immune dysfunction,but long-term endurance training may confer protective effects on immune cell function. This study investigates how natural killer (NK) cell phenotypes,functional markers,and metabolism differ between endurance-trained and untrained older adults. Ex vivo expanded NK cells from endurance-trained (63.6 ± 2.1 years) and untrained (64.3 ± 3.3 years) males were exposed to adrenergic blockade (propranolol; 0–200 ng/mL) or mTOR inhibition (rapamycin; 10–100 ng/mL),both with or without PMA-induced inflammatory stimulation. Flow cytometry assessed NK subsets,activation (CD38,CD57,CD107a,NKG2D),senescence (KLRG1),and inhibitory markers (PD-1,LAG-3,TIM-3,NKG2A). Seahorse analysis measured metabolic parameters. Trained participants displayed healthier immune profiles (lower NLR,SII) and higher effector NK cells with lower cytotoxic subsets. Propranolol at 100 ng/mL blunted PMA-driven increases in CD57,CD107a,and NKG2D,while potentiating regulatory markers KLRG1,LAG-3,and PD-1 in the trained group,indicating stronger immunoregulation. With rapamycin,trained NK cells preserved NKG2D and CD107a at 10 ng/mL,maintaining cytotoxicity and degranulation. In contrast,at 100 ng/mL rapamycin plus PMA,trained NK cells shifted toward an effector phenotype with higher CD57 and CD107a,yet a blunted PMA-increased LAG-3 and TIM-3,suggesting resistance to exhaustion. PD-1 and KLRG1 remained elevated,reflecting balanced immune control. Mitochondrial analysis revealed that trained NK cells exhibited higher basal and maximal OCR,greater spare respiratory capacity,and OCR/ECAR ratio,reflecting superior metabolic fitness. These findings indicate that endurance-trained older adults have NK cells with greater functional adaptability,reduced senescence,and enhanced metabolism under inflammatory and pharmacological stress.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-06057-y. View Publication -
(Jul 2025) Journal of Translational Medicine 23 10247Bifidobacterium animalis subsp. Lactis BX-BC08 modulates gut microbiota and secretes alpha-Ketoglutaric acid to alleviate MC903-induced atopic dermatitis
ObjectiveBifidobacterium is known to be depleted in patients with atopic dermatitis (AD). This study aims to investigate the potential prophylactic effects of Bifidobacterium animalis subsp. lactis BX-BC08 (B. lactis BX-BC08) in a murine model of AD.DesignThe immunosuppressive and anti-inflammatory effects of BX-BC08 were evaluated in a MC903-induced AD mouse model. Gut microbiota composition was analyzed by metagenomic sequencing,while high-performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify anti-inflammatory molecules produced by B. lactis BX-BC08.ResultsBX-BC08 significantly attenuated pro-inflammatory responses,scaling and swelling in the MC903-induced AD like murine model compared to controls. Fecal microbial profiling revealed an enrichment of probiotics and a reduction of pro-inflammatory bacteria in BX-BC08 treated mice. Metabolic analysis of BX-BC08 bacteria culture supernatant and treated mice identified a significant enrichment of alpha-Ketoglutaric acid (AKG). Functional validation in the murine AD model demonstrated that AKG strongly suppressed T helper 2 (Th2)-driven pro-inflammatory responses.ConclusionBX-BC08 mitigates AD-like inflammation by producing the anti-inflammatory metabolite AKG. BX-BC08 could serve as a novel prophylactic agent for AD prevention.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12967-025-06769-9. View Publication -
(Jul 2025) Scientific Reports 15Genotype-integrated single-cell transcriptome analysis reveals the role of DDX41 pR525H in a patient with myelodysplastic neoplasms
DEAD-box helicase 41 (DDX41) is implicated in germline (GL)-predisposed myeloid neoplasms,where pathogenic GL variants often lead to disease following the acquisition of a somatic variant in trans,most commonly p.R525H. However,the precise molecular mechanisms by which DDX41 variants contribute to the pathogenesis of myeloid neoplasms remain poorly understood,partly due to challenges in establishing cellular and animal models that faithfully recapitulate the human disease phenotype. This limitation highlights the necessity of directly analyzing primary human disease cells. In this case report,conducted to pursue this objective,we implemented single-cell RNA sequencing integrated with genotyping at the p.R525 locus in a myelodysplastic neoplasm (MDS) harboring both germline and somatic DDX41 variants,leveraging highly efficient Terminator-Assisted Solid-phase cDNA amplification and sequencing. We found that acquiring p.R525H induced G2/M cell cycle arrest selectively in colony-forming unit-erythroid cells,accompanied by R-loop accumulation,which impaired erythropoiesis through DNA damage. In hematopoietic stem and myeloid progenitor populations,gene expression profiles were largely similar between p.R525H-positive and -negative cells. However,ligand-receptor interaction and transcriptional regulation analyses suggested a non-cell-autonomous influence from p.R525H-expressing cells on GL variant-only cells. This interaction drove convergence toward a shared expression profile,highlighting an intricate interplay shaping the patient’s MDS phenotype. View Publication -
(Jul 2025) Journal for Immunotherapy of Cancer 13 7ADI-270: an armored allogeneic gamma delta T cell therapy designed to target CD70-expressing solid and hematologic malignancies
AbstractBackgroundThe tumor microenvironment (TME) poses challenges that limit the efficacy of conventional CAR-T cell therapies. Homing barriers,immunosuppressive factors,and target antigen heterogeneity can impair CAR-T cell functional activity within the TME. Alternative strategies have contemplated incorporating the use of gamma delta (γδ) T cells as a CAR-T cell approach to potentially overcome these limitations. γδ T cells possess both innate and adaptive immunity to facilitate broad tumor recognition,and their natural propensity for tissue tropism may allow for more effective tumor infiltration. Reported here is the preclinical characterization of ADI-270,an allogeneic γδ CAR-T cell product targeting CD70+ cancers,engineered with a third-generation CAR based on the natural CD27 receptor. ADI-270 is also double-armored to mitigate the immunosuppressive effects of TGFβ and reduce the potential for allogeneic rejection.MethodsVδ1 T cells engineered to express an anti-CD70 CAR and dominant negative TGFβ receptor II (dnTGFβRII) were expanded from healthy donor human PBMCs. The phenotype and functional characterization of ADI-270 were assessed with in vitro cell culture assays and in vivo tumor xenograft models.ResultsADI-270 exhibited high levels of in vitro cytotoxicity against a panel of cancer cell lines and displayed a favorable inflammatory cytokine profile compared with reference scFv-based anti-CD70 CAR αβ T cells. Cytotoxicity remained potent despite low CD70 expression observed in multiple solid and hematologic tumor cell models. When armored with dnTGFβRII,ADI-270 exhibited functional resilience to TGFβ-mediated inhibition of T cell effector activity. In addition,the incorporation of potent and sensitive CD70-targeting decreased T cell-mediated alloreactive killing against ADI-270 in vitro without evidence of fratricide. Finally,ADI-270 displayed robust tumor tropism and control of primary and secondary tumor challenges in xenograft mouse models.ConclusionsThese results demonstrate the robust potency and capacity of ADI-270 to extend antitumor activity to cancers with heterogeneous antigen expression. The functional armoring incorporated into ADI-270 provides a mechanism to overcome the limitations of reduced efficacy and persistence within the TME. ADI-270 has the potential to target multiple CD70+ cancers with initial clinical evaluation proceeding in relapsed/refractory clear cell renal cell carcinoma.Trial registration numberNCT06480565. View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号