技术资料
-
文献A. Leonteva et al. (Jul 2025) Cells 14 14The Activity of Human NK Cells Towards 3D Heterotypic Cellular Tumor Model of Breast Cancer
Due to the complexity of modeling tumor-host interactions within the tumor microenvironment in vitro,we developed a 3D heterotypic cellular breast cancer (BC) model. We generated spheroid models using MCF7,MDA-MB-231,and SK-BR-3 cell lines alongside cancer-associated (BrC4f) and normal (BN120f) fibroblasts in ultra-low attachment plates. Stromal spheroids (3Df) were formed using a liquid overlay technique (graphical abstract). The YT cell line and peripheral blood NK (PB-NK) cells were used as immune components in our 3D model. In this study,we showed that stromal cells promoted tumor cell aggregation into spheroids,regardless of the initial proliferation rates,with NK cells accumulating in fibroblast-rich regions. The presence of CAFs within the model induced alterations in the expression levels of MICA/B and PD-L1 by tumor cells within the 3D-2 model. The feasibility of utilizing a 3D cell BC model in combination with cytokines and PB-NKs was evaluated. We observed that IL-15 and IL-2 enhanced NK cell activity within spheroids,whereas TGFβ had varying effects on proliferation depending on the cell type. Stimulation with IL-2 and IL-15 or TGFβ1 altered PB-NK markers and stimulated their differentiation into ILC1-like cells in 3D models. These findings underscore the regulatory function of CAFs in shaping the response of the tumor microenvironment to immunotherapeutic interventions. View Publication -
文献I. Altıntaş et al. (Jul 2025) Scientific Reports 15A hexamerization-enhanced, Fc-silenced agonistic CD27 antibody amplifies T-cell effector functions as single agent and in combination with PD-1 blockade
HexaBody-CD27 (GEN1053/BNT313) is an investigational novel agonistic CD27 antibody engineered to enhance T-cell costimulation and promote antitumor immunity. Through the introduction of a hexamerization-enhancing mutation in the IgG Fc domain,HexaBody-CD27 was designed to drive clustering and activation of CD27 via intermolecular Fc:Fc interactions between membrane-bound antibodies,independent of crosslinking by FcγR-bearing cells. HexaBody-CD27 carries an Fc-silencing mutation to prevent T-cell depletion through Fc-mediated effector functions. In vitro,HexaBody-CD27 induced CD27 receptor signaling independent of FcγR-mediated crosslinking in a reporter assay. It also enhanced T-cell proliferation,cytotoxic activity and proinflammatory cytokine secretion in primary human lymphocytes. In contrast to benchmark IgG1 CD27 antibodies,HexaBody-CD27 did not induce phagocytosis of T cells in vitro. HexaBody-CD27 promoted ex vivo tumor infiltrating lymphocyte (TIL) expansion in non-small cell lung cancer (NSCLC) specimens,in particular of CD8 + TILs. The combination of HexaBody-CD27 with an anti-PD-1 antibody enhanced T-cell proliferation,cytokine secretion,and cytotoxic activity in vitro compared to either compound alone. In conclusion,HexaBody-CD27 enhanced T-cell activation and effector functions in an FcγR-crosslinking-independent manner,without inducing T-cell depletion. The immune agonist activity of HexaBody-CD27 was potentiated in combination with PD-1 blockade. View Publication -
文献Q. Guo et al. (Jul 2025) Nucleic Acids Research 53 14PPARG-centric transcriptional re-wiring during differentiation of human trophoblast stem cells into extravillous trophoblasts
Peroxisome proliferator-activated receptor gamma (PPARG) is a nuclear receptor family transcription factor (TF) critical for adipogenesis,lipid metabolism,insulin sensitivity,and inflammation. It has also been known to play essential roles in trophoblast development and placentation. Dysregulation of PPARG in trophoblast differentiation has been implicated in pregnancy complications,such as pre-eclampsia and gestational diabetes. However,the molecular mechanisms of PPARG-dependent target gene regulation and its interactions with other regulatory factors during human trophoblast differentiation remain unclear. Using human trophoblast stem cells (TSCs),mimicking placental cytotrophoblasts (CTs),and their differentiation into extravillous trophoblasts (EVTs) as our models,we reveal that PPARG has cell-type-specific targets in TSCs and EVTs. We also find that while PPARG is essential for both TSC self-renewal and EVT differentiation,only its role in EVT differentiation is ligand sensitive and requires ligand-binding domain (LBD)-mediated transcriptional activity,whereas its function in TSC self-renewal appears to be ligand insensitive. Combined analysis with chromosomal targets of previously defined key TFs in TSCs and EVTs shows that PPARG forms trophoblast cell-type-specific regulatory circuitries,leading to differential target gene regulation via transcriptional re-wiring during EVT differentiation. Additionally,the enhanced invasiveness of EVTs treated with a PPARG agonist suggests a potential connection between PPARG pathways and human placenta accreta. View Publication -
文献K. Aoki et al. (Jul 2025) Antibodies 14 3Isolation of a Monoclonal Human scFv Against Cytomegalovirus pp71 Antigen Using Yeast Display
Background: Human cytomegalovirus (CMV) is a major pathogen that poses significant risks to immunocompromised individuals and neonates. The tegument protein pp71,encoded by the UL82 gene,plays a pivotal role in initiating viral lytic replication and evading host immune responses. Despite its clinical relevance,standardized monoclonal antibodies (mAbs) for pp71 remain limited,prompting the need to expand the available repertoire of antibodies targeting this critical protein. Methods: In this study,we constructed a diverse human single-chain variable fragment (scFv) library using RNA derived from the B cells of four healthy donors. The library was expressed in Saccharomyces cerevisiae,and iterative rounds of magnetic-activated cell sorting (MACS) were performed against recombinant pp71. Clonal enrichment was monitored using flow cytometry. Results: Among the isolated clones,one designated ID2 exhibited high sensitivity and specificity for pp71,as demonstrated by flow cytometry,immunofluorescence,an enzyme-linked immunosorbent assay (ELISA),and biolayer interferometry (BLI). Conclusions: Collectively,these findings establish a novel pp71-specific mAb and underscore the utility of yeast surface display combined with MACS for expanding the antibody toolkit available for CMV research and diagnostics. View Publication -
文献R. Wang et al. (Jul 2025) Journal of Experimental & Clinical Cancer Research : CR 44 3MiR-181a-driven downregulation of cholesterol biosynthesis through SREBP2 inhibition suppresses uveal melanoma metastasis
uveal melanoma (UM) is the most common primary intraocular tumor in adults,with metastasis being the leading cause of death. However,effective treatments for metastatic UM remain limited. Emerging evidence suggests that cholesterol metabolism plays a role in cancer progression,but its impact on UM metastasis is not well understood. we investigated the effects of miR-181a on UM metastasis using multiple UM cell lines and a suprachoroidal injection mouse model. Functional assays,including migration,invasion,and cancer stem-like cell (CSC) formation,were performed. The target of miR-181a was identified through bioinformatics,luciferase assays,and western blotting. Cholesterol levels were measured,and in vitro and in vivo studies assessed the therapeutic potential of combining miR-181a with crizotinib. miR-181a significantly decreases UM cell migration,invasion,and metastasis. Mechanistically,miR-181a was found to target sterol regulatory element-binding protein 2 (SREBP2),thereby inhibiting cholesterol biosynthesis. This decrease in cholesterol levels hindered reduced epithelial-to-mesenchymal transition (EMT) and led to a decline in cancer stem-like cell (CSC) populations in UM. Furthermore,elevated cholesterol or overexpression of SREBP2 abrogated the anti-metastatic effects of miR-181a. Additionally,a combination of miR-181a and crizotinib significantly inhibited metastasis,both in vitro and in vivo. miR-181a inhibits UM metastasis by targeting SREBP2 and reducing cholesterol biosynthesis. Its combination with crizotinib may provide a promising therapeutic strategy for metastatic UM. The online version contains supplementary material available at 10.1186/s13046-025-03459-8. View Publication -
文献C. Yan et al. (Jul 2025) Journal of Neuroinflammation 22 2Sex differences on laser-induced choroidal neovascularization and short-chain fatty acid treatment in a mouse model
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide,with a clinical presentation that varies between sexes. In late-stage AMD,choroidal neovascularization (CNV) triggers retinal inflammation and degeneration,processes that are exacerbated by an overactive response of retinal microglial cells. Short-chain fatty acids (SCFAs) have emerged as potential treatments for AMD due to their anti-inflammatory properties. In this study,we investigate the effects of SCFA treatment in a laser-induced CNV mouse model,focusing on sex-dependent differences in disease progression and microglial response. Our findings demonstrate distinct sex-specific patterns in the development of CNV and associated pathological hallmarks. SCFA treatment resulted in a slight increase in density of Iba1 + microglial cells in females at 3 days post-laser (3dpl),while it prevented an increase in males at 7 dpl,with both sexes showing enhanced microglial ramification. The dynamics of microglial density were likely linked to protective effects on CNV lesion,leakage size,and inflammation,which occurred earlier in females and later in males. At transcriptional level,SCFA showed mixed effects,mainly targeting inflammation resolution,mitochondrial support,and neuronal repair in a sex-dependent manner. In vitro,SCFAs reduced microglial phagocytosis of retinal debris,suggesting a potential anti-inflammatory action. This study underscores the importance of considering sex-specific responses in the development of AMD treatments,such as SCFAs,and highlights the need for personalized therapeutic strategies. The online version contains supplementary material available at 10.1186/s12974-025-03508-1. View Publication -
文献J. Tan et al. (Jul 2025) Scientific Reports 15Nylon mesh chip promotes three-dimensional visualization of intestinal organoids
Organoids are pivotal for bridging cellular-level and organism-level biological studies; however,significant challenges persist in their three-dimensional (3D) visualization. This study presents a nylon mesh chip designed to overcome these obstacles specifically for intestinal organoids (IOs). The chip,meticulously fabricated and assembled,comprises an upper glass layer,a nylon mesh,and a lower glass layer. We cultured IOs from mouse intestinal crypts and performed fluorescent labeling on the chip. For enhanced visualization,fluorescent labeling combined with 3D reconstruction techniques was employed. Results demonstrate that the chip’s structure stabilizes IOs in liquid environments. While conventional fluorescence imaging is limited by mesh interference,laser confocal 3D reconstruction achieves high-quality visualization by effectively filtering out redundant signals. The nylon mesh chip is a robust tool for 3D visualization of IOs and holds potential for other budding organoid types. This innovation is poised to advance organoid 3D visualization research. The online version contains supplementary material available at 10.1038/s41598-025-12015-5. View Publication -
文献C. W. T. Wong et al. (Jun 2025) Bioactive Materials 51 12Lung cancer intravasation-on-a-chip: Visualization and machine learning-assisted automatic quantification
During lung cancer metastasis,tumor cells undergo epithelial-to-mesenchymal transition (EMT),enabling them to intravasate through the vascular barrier and enter the circulation before colonizing secondary sites. Here,a human in vitro microphysiological model of EMT-driven lung cancer intravasation-on-a-chip was developed and coupled with machine learning (ML)-assisted automatic identification and quantification of intravasation events. A robust EMT-inducing cocktail (EMT-IC) was formulated by augmenting macrophage-conditioned medium with transforming growth factor-β1. When introduced into microvascular networks (MVNs) in microfluidic devices,EMT-IC did not affect MVN stability and physiologically relevant barrier functions. To model lung cancer intravasation on-a-chip,EMT-IC was supplemented into co-cultures of lung tumor micromasses and MVNs. Wihin 24 h of exposure,EMT-IC facilitated the insertion of membrane protrusions of migratory A549 cells into microvascular structures,followed by successful intravasation. EMT-IC reduced key basement membrane and vascular junction proteins - laminin and VE-Cadherin - rendering vessel walls more permissive to intravasating cells. ML-assisted vessel segmentation combined with co-localization analysis to detect intravasation events confirmed that EMT induction significantly increased the number of intravasation events. Introducing metastatic (NCI-H1975) and non-metastatic (BEAS-2B) cell lines demonstrated that both,baseline intravasation potential and responsiveness to EMT-IC,are reflected in the metastatic predisposition of lung cancer cell lines,highlighting the model's universal applicability and cell-specific sensitivity. The reproducible detection of intravasation events in the established model provides a physiologically relevant platform to study processes of cancer metastasis with high spatio-temporal resolution and short timeframe. This approach holds promise for improved drug development and informed personalized patient treatment plans. View Publication -
文献H. Yang et al. (Jul 2025) Clinical Epigenetics 17 1Martinostat as a novel HDAC inhibitor to overcome tyrosine kinase inhibitor resistance in chronic myeloid leukemia
Chronic myeloid leukemia (CML) remains a therapeutic challenge,particularly in patients who develop resistance to standard tyrosine kinase inhibitors (TKIs) such as imatinib. Here,we present the first demonstration of the potent anti-leukemic activity of the histone deacetylase (HDAC) inhibitor martinostat in both TKI-sensitive and TKI-resistant CML. Structural and biochemical analyses confirmed the efficient and selective binding of martinostat to HDAC isoenzyme ligand-binding pockets,resulting in histone and tubulin hyperacetylation in both imatinib-sensitive and resistant CML cells,outperforming vorinostat,a clinically used HDAC inhibitor (HDACi). It selectively impaired CML cell proliferation and viability and induced apoptosis across various CML models,including resistant cell models and patient blasts,with minimal toxicity to healthy cells and low developmental toxicity in zebrafish. In addition to its single-agent efficacy,martinostat demonstrated enhanced anticancer effects when combined with imatinib,both in vitro and in vivo,significantly reducing tumor growth in resistant CML xenograft models. Mechanistically,mRNA-seq data showed that martinostat disrupted key survival signaling pathways and amplified apoptotic responses,contributing to its anticancer activity. These findings highlight the potential of martinostat as a selective,low-toxicity HDACi that,combined with TKIs,could provide an effective strategy to overcome drug resistance in CML and improve therapeutic outcomes. The online version contains supplementary material available at 10.1186/s13148-025-01921-0. View Publication -
文献M. Doglio et al. (Jul 2025) Frontiers in Immunology 16CXCR5 engineered human and murine Tregs for targeted suppression in secondary and tertiary lymphoid organs
Secondary and tertiary lymphoid structures are a critical target of suppression in many autoimmune disorders,protein replacement therapies,and in transplantation. Although antigen-specific regulatory T cells (Tregs),such as chimeric antigen receptor (CAR) Tregs,generally persist longer and localize to target tissues more effectively than polyclonal Tregs in animal models,their numbers still progressively decline over time. A potential approach to maximize Treg activity in vivo is the expression of chemokine receptors such as CXCR5,which would enable localization of a greater number of engineered cells at sites of antigen presentation. Indeed,CXCR5 expression on follicular T helper cells and follicular Tregs enables migration toward lymph nodes,B cell zones,and tertiary lymphoid structures that appear in chronically inflamed non-lymphoid tissues. In this study,we generated human and murine CXCR5 co-expressing engineered receptor Tregs and tested them in preclinical mouse models of allo-immunity and hemophilia A,respectively. Additionally,we engineered a murine CXCR5 co-expressing clotting factor VIII (FVIII) specific T cell receptor fusion construct epsilon (FVIII TRuCe CXCR5) Treg to suppress anti-drug antibody development in a model of FVIII protein replacement therapy for hemophilia A. In vitro,anti-HLA-A2 CXCR5+ CAR-Tregs showed enhanced migratory and antigen-specific suppressive capacities compared to untransduced Tregs. When injected into an NSG mouse model of HLA-A2+ pancreatic islet transplantation,anti-HLA-A2 CXCR5+ CAR-Tregs maintained a good safety profile allowing for long-term graft survival in contrast to anti-HLA-A2 CXCR5+ conventional CAR-T (Tconv) cells that eliminated the graft. Similarly,FVIII TRuCe CXCR5 Treg demonstrated increased in vivo persistence and suppressive capacity in a murine model of hemophilia A. Collectively,our findings indicate that CXCR5 co-expression is safe and enhances in vivo localization and persistence in target tissues. This strategy can potentially promote targeted tolerance without the risk of off-target effects in multiple disease models. View Publication -
文献C. Wongborisuth et al. (Jul 2025) Scientific Reports 15Disrupting ZBTB7A or BCL11A binding sites reactivates fetal hemoglobin in erythroblasts from healthy and β 0 -thalassemia/HbE individuals
CRISPR/Cas9 genome editing has emerged as a promising treatment for genetic diseases like β-thalassemia. Editing γ-globin promoters to disrupt ZBTB7A/LRF or BCL11A binding sites has shown potential for reactivating fetal hemoglobin and treating sickle cell disease. However,its application to β 0 -thalassemia/HbE disease remains unclear. This study utilized CRISPR/Cas9 to disrupt these sites in mobilized CD34 + hematopoietic stem /progenitor cells from healthy donors and β 0 -thalassemia/HbE patients. The editing efficiency for the BCL11A site (75–92%) was higher than for the ZBTB7A/LRF site (57–60%). Both disruptions similarly increased fetal hemoglobin production in healthy donors ( BCL11A 26.2 ± 1.4%,ZBTB7A/LRF 27.9 ± 1.5%) and β 0 -thalassemia/HbE cells ( BCL11A 62.7 ± 0.9%,ZBTB7A/LRF 64.0 ± 1.6%). Off-target effects were absent in BCL11A -edited cells but observed at low frequencies in ZBTB7A/LRF -edited cells. Neither disruption significantly affected erythroid differentiation. These findings highlight the comparable contributions of ZBTB7A/LRF and BCL11A binding sites to γ-globin reactivation. CRISPR/Cas9 editing of either site may offer a potential therapeutic strategy for β 0 -thalassemia/HbE disease. View Publication -
文献R. Waldmann et al. (Jul 2025) European Journal of Immunology 55 7AK2‐Deficient Mice Recapitulate Impaired Lymphopoiesis of Reticular Dysgenesis Patients, but Also Lack Erythropoiesis
Reticular dysgenesis (RD) is a rare genetic disorder caused by mutations in the adenylate kinase 2 ( AK2 ) gene. It is characterized by a T − B − severe combined immunodeficiency,agranulocytosis,and sensorineural deafness. We established and characterized a haematopoiesis‐specific conditional Ak2 ‐knockout mouse model to provide a model system to study the molecular pathophysiology of RD. As expected from the human phenotype of RD,haematopoiesis‐specific AK2‐deficient embryos had a small,atrophic thymus consisting mainly of epithelial cells. No recognizable T‐cell component was observed,but B‐cell lineage precursor cells were present in the foetal liver. The effects of AK2 deficiency on myelopoiesis were less severe in mice than in humans. The absolute numbers of monocytes,macrophages,granulocytes and megakaryocytes in foetal liver as well as colony‐forming precursors were not reduced. In contrast to humans,haematopoiesis‐specific Ak2 ‐knockout mice exhibit embryonic lethality between E13 and E15 due to severe anaemia caused by an early block in definitive erythropoiesis. Murine erythroid progenitors mainly express AK2 and only low levels of functionally related kinases,which are unable to compensate for AK2 deficiency,in contrast to human erythroid progenitors. View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号