技术资料
-
文献D. Barozzi et al. (Jul 2025) Cell Reports Methods 5 7Dynamic stimulation promotes functional tissue-like organization of a 3D human lymphoid microenvironment model in vitro
This work focused on generating a three-dimensional (3D) in vitro dynamic model to study chronic lymphocytic leukemia (CLL) cell dissemination,homing,and mechanisms of therapy resistance. We used a gelatin-based,hard porous biomaterial as a support matrix to develop 3D tissue-like models of the human lymph node and bone marrow,which were matured inside bioreactors under dynamic perfusion of medium. Comparing static and dynamic cultures of these 3D constructs revealed that perfusion promoted a tissue-like internal organization of cells,characterized by the expression of specific functional markers and deposition of an intricate extracellular matrix protein network. Recirculation of CLL cells within the dynamic system led to changes in leukemic cell behavior and in the expression of key markers involved in tumor progression. These findings suggest that the model is well suited for investigating the pathophysiological mechanisms of CLL and potentially other hematological malignancies. View Publication -
文献Chu et al. (Jul 2025) International Journal of Molecular Sciences 26 13Limited Myelination Capacity in Human Schwann Cells in Experimental Models in Comparison to Rodent and Porcine Schwann Cells
Schwann cells (SCs) play a crucial role in peripheral nerve repair by supporting axonal regeneration and remyelination. While extensive research has been conducted using rodent SCs,increasing attention is being directed toward human SCs due to species-specific differences in phenotypical and functional properties,and accessibility of human SCs derived from diverse sources. A major challenge in translating SC-based therapies for nerve repair lies in the inability to replicate human SC myelination in vitro,posing a significant obstacle to drug discovery and preclinical research. In this study,we compared the myelination capacity of human,rodent,and porcine SCs in various co-culture conditions,including species-matched and cross-species neuronal environments in a serum-free medium. Our results confirmed that rodent and porcine SCs readily myelinate neurites under standard culture conditions after treatment with ascorbic acid for two weeks,whereas human SCs,at least within the four-week observation period,failed to show myelin staining in all co-cultures. Furthermore,we investigated whether cell culture manipulation impairs human SC myelination by transplanting freshly harvested and predegenerated human nerve segments into NOD-SCID mice for four weeks. Despite supporting host axonal regeneration into the grafts,human SCs exhibited very limited myelination,suggesting an intrinsic species-specific restriction rather than a cell culture-induced defect. These observations suggest fundamental differences between human and rodent SCs and highlight the need for human-specific models and protocols to advance our understanding of SC myelination. View Publication -
文献S. Liu et al. (Jul 2025) Chinese Medicine 20Effects of solamargine in hepatic metastasis of colorectal cancer: induction of ferroptosis and elimination of cancer stem cells
Colorectal cancer (CRC) is a prevalent malignant tumor globally,ranking third in incidence and second in mortality. Metastasis is the main cause of death in patients with CRC. Solanum nigrum L. (SNL),a traditional Chinese medicinal herb endowed with detoxification,blood circulation enhancement,and anti-swelling properties,has been widely used in folk prescriptions for cancer treatment in China. Solamargine (SM) is the major steroidal alkaloid glycoside purified from SNL. However,its role and mechanism against metastatic CRC are not yet clear. The purpose of this study was to evaluate the inhibitory effect of SM on human hepatic metastatic CRC and investigate its underlying mechanism. CCK-8 assay,colony-formation assay,transwell assay,flow cytometry,tumoursphere formation assay,reverse-transcription quantitative PCR (RT-qPCR),Western blotting,transcriptomic sequencing and ferroptosis analysis were performed to reveal the efficacy and the underlying mechanism of SM in CRC cell lines. In vivo,allograft model,patient-derived xenograft (PDX) model,and liver metastatic model were performed to verify the effect of SM on the growth and metastasis of CRC. SM was found to suppress hepatic metastasis in CRC by effectively targeting key cellular processes,including proliferation,survival,and stemness. RNA sequencing showed that SM could induce ferroptosis,which was confirmed by elevated lipid reactive oxygen species (ROS) and downregulated glutathione peroxidase 4 (GPX4) and glutathione synthetase (GSS) in CRC cells and xenografts. Induction of ferroptosis by SM was regulated by nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore,downregulation of β-catenin was found to be fundamental for the SM-enabled cancer stem cells (CSCs) elimination and metastasis blockage in CRC. Our results indicated that SM is a promising therapeutic drug to inhibit hepatic metastasis in CRC by inducing ferroptosis and impeding CSCs. The online version contains supplementary material available at 10.1186/s13020-025-01171-5. View Publication -
文献C. Shin et al. (Jul 2025) Molecular Medicine Reports 32 3Chimeric PD-1 receptor redirects primary T cells against childhood solid tumors but not to PD-1 ligand-positive CD80-coexpressing cells
The clinical application of T cells engineered with chimeric antigen receptors (CARs) for solid tumors is challenging. A major reason for this involves tumor immune evasion mechanisms,including the high expression of immune checkpoint molecules,such as the programmed death 1 (PD-1) ligands PD-L1 and PD-L2. The inducible expression of PD-L1 in tumors has been observed after CAR-T-cell infusion,even in tumors natively not expressing PD-L1. Furthermore,numerous types of pediatric cancer do not have suitable targets for CAR-T-cell therapy. Therefore,the present study aimed to develop novel CAR-T cells that target PD-L1 and PD-L2,and to evaluate their efficacy against pediatric solid tumors. A novel CAR harboring the immunoglobulin V-set domain of the human PD-1 receptor as an antigen binding site (PD-1 CAR-T) was developed without using a single-chain variable fragment. PD-1 CAR-T cells were successfully manufactured by adding an anti-PD-1 antibody,nivolumab,to the ex vivo expansion culture to prevent fratricide during the manufacturing process due to the inducible expression of PD-L1 in activated human T cells. The expression of PD-L1 (and PD-L2 to a lesser extent) was revealed to be highly upregulated in various pediatric solid tumor cells,which displayed no or very low expression initially,on in vitro exposure to interferon-γ and/or tumor necrosis factor-α,which are cytokines secreted by tumor-infiltrating T cells. Furthermore,PD-1 CAR-T cells exhibited strong cytotoxic activity against pediatric solid tumor cells expressing PD-L1 and PD-L2. Conversely,the effect of PD-1 CAR-T cells was significantly attenuated against PD-L1-positive cells coexpressing CD80,suggesting that the toxicity of PD-1 CAR-T cells to normal immune cells,including antigen presenting cells,can be minimized. In conclusion,PD-1 ligands are promising therapeutic targets for pediatric solid tumors. PD-1 CAR-T cells,either alone or in combination with CAR-T cells with other targets,represent a potential treatment option for solid tumors. View Publication -
文献E. Kozłowska et al. (Jul 2025) Cell & Bioscience 15 JANHTT loss-of-function contributes to RNA deregulation in developing Huntington’s disease neurons
Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of CAG repeats in the HTT gene,which results in a long polyglutamine tract in the huntingtin protein (HTT). One of the earliest key molecular mechanisms underlying HD pathogenesis is transcriptional dysregulation,which is already present in the developing brain. In this study,we searched for networks of deregulated RNAs crucial for initial transcriptional changes in HD- and HTT-deficient neuronal cells. RNA-seq (including small RNAs) was used to analyze a set of isogenic human neural stem cells. The results were validated using additional methods,rescue experiments,and in the medium spiny neuron-like cells. We observed numerous changes in gene expression and substantial dysregulation of miRNA expression in HD and HTT -knockout ( HTT -KO) cell lines. The overlapping set of genes upregulated in both HD and HTT -KO cells was enriched in genes associated with DNA binding and the regulation of transcription. We observed substantial upregulation of the following transcription factors: TWIST1,SIX1,TBX1,TBX15,MSX2,MEOX2 and FOXD1 . Moreover,we identified miRNAs that were consistently deregulated in HD and HTT -KO cells,including miR-214,miR-199,and miR-9. These miRNAs may function in the network that regulates TWIST1 and HTT expression via a regulatory feed-forward loop in HD. On the basis of overlapping changes in the mRNA and miRNA profiles of HD and HTT -KO cell lines,we propose that transcriptional deregulation in HD at early neuronal stages is largely caused by a deficiency of properly functioning HTT rather than a typical gain-of-function mechanism. The online version contains supplementary material available at 10.1186/s13578-025-01443-5. View Publication -
文献N. Daskoulidou et al. (Jul 2025) Alzheimer's & Dementia 21 7The Alzheimer's disease‐associated complement receptor 1 variant confers risk by impacting glial phagocytosis
Genome‐wide association studies have implicated complement in Alzheimer's disease (AD). The CR1*2 variant of complement receptor 1 (CR1; CD35),confers increased AD risk. We confirmed CR1 expression on glial cells; however,how CR1 variants influence AD risk remains unclear. Induced pluripotent stem cell‐derived microglia and astrocytes were generated from donors homozygous for the common CR1 variants (CR1*1/CR1*1;CR1*2/CR1*2). CR1 expression was quantified and phagocytic activity assessed using diverse targets ( Escherichia coli bioparticles,amyloid β aggregates,and synaptoneurosomes),with or without serum opsonization. Expression of CR1*1 was significantly higher than CR1*2 on glial lines. Phagocytosis for all targets was markedly enhanced following serum opsonization,attenuated by Factor I‐depletion,demonstrating CR1 requirement for C3b processing. CR1*2‐expressing glia showed significantly enhanced phagocytosis of all opsonized targets compared to CR1*1‐expressing cells. CR1 is critical for glial phagocytosis of opsonized targets. CR1*2,despite lower expression,enhances glial phagocytosis,providing mechanistic explanation of increased AD risk. Induced pluripotent stem cell (iPSC)‐derived glia from individuals expressing the Alzheimer's disease (AD) risk variant complement receptor (CR) 1*2 exhibit lower CR1 expression compared to those from donors expressing the non‐risk form CR1*1. The iPSC‐derived glia from individuals expressing the AD risk variant CR1*2 exhibit enhanced phagocytic activity for opsonized bacterial particles,amyloid‐β aggregates and human synaptoneurosomes compared to those from donors expressing the non‐risk form CR1*1. We suggest that expression of the CR1*2 variant confers risk of AD by enhancing the phagocytic capacity of glia for opsonized targets. View Publication -
文献E. Keltsch et al. (Jul 2025) Immunity & Ageing : I & A 22 6Aging modulates the immunosuppressive, polarizing and metabolic functions of blood-derived myeloid-derived suppressor cells (MDSCs)
Immunosenescence describes the gradual remodeling of immune responses,leading to disturbed immune homeostasis and increased susceptibility of older adults for infections,neoplasia and autoimmunity. Decline in cellular immunity is associated with intrinsic changes in the T cell compartment,but can be further pushed by age-related changes in cells regulating T cell immunity. Myeloid-derived suppressor cells (MDSCs) are potent inhibitors of T cell activation and function,whose induction requires chronic inflammation. Since aging is associated with low grade inflammation (inflammaging) and increased myelopoiesis,age-induced changes in MDSC induction and function in relation to T cell immunity were analyzed. MDSC numbers and functions were compared between “healthy” young and old adults,who were negatively diagnosed for severe acute and chronic diseases known to induce MDSC accumulation. MDSCs were either isolated from peripheral blood or generated in vitro from blood-derived CD14 cells. Aging was associated with significantly increased MDSC numbers in the monocytic- (M-) and polymorphonuclear (PMN-) MDSC subpopulations. MDSCs could be induced more efficiently from CD14 cells of old donors and these MDSCs inhibited CD3/28-induced T cell proliferation significantly better than MDSCs induced from young donors. Serum factors of old donors supported MDSC induction comparable to serum factors from young donors,but increased immunosuppressive activity of MDSCs was only achieved by serum from old donors. Elevated immunosuppressive activity of MDSCs from old donors was associated with major metabolic changes and increased intracellular levels of neutral and oxidized lipids known to promote immunosuppressive functions. Independent of age,MDSC-mediated suppression of T cell proliferation required direct MDSC– T cell contact. Besides their increased ability to inhibit activation-induced T cell proliferation,MDSCs from old donors strongly shift the immune response towards Th2 immunity and might thereby further contribute to impaired cell-mediated immunity during aging. These results indicate that immunosenescence of innate immunity comprises accumulation and functional changes in the MDSC compartment,which directly impacts T cell functions and contribute to age-associated impaired T cell immunity. Targeting MDSCs during aging might help to maintain functional T cell responses and increase the chance of healthy aging. The online version contains supplementary material available at 10.1186/s12979-025-00524-w. View Publication -
文献K. K. Edmonds et al. (Jul 2025) Nature Communications 16Structure and biochemistry-guided engineering of an all-RNA system for DNA insertion with R2 retrotransposons
R2 elements,a class of non-long terminal repeat (non-LTR) retrotransposons,have the potential to be harnessed for transgene insertion. However,efforts to achieve this are limited by our understanding of the retrotransposon mechanisms. Here,we structurally and biochemically characterize R2 from Taeniopygia guttata (R2Tg). We show that R2Tg cleaves both strands of its ribosomal DNA target and binds a pseudoknotted RNA element within the R2 3′ UTR to initiate target-primed reverse transcription. Guided by these insights,we engineer and characterize an all-RNA system for transgene insertion. We substantially reduce the system’s size and insertion scars by eliminating unnecessary R2 sequences on the donor. We further improve the integration efficiency by chemically modifying the 5′ end of the donor RNA and optimizing delivery,creating a compact system that achieves over 80% integration efficiency in several human cell lines. This work expands the genome engineering toolbox and provides mechanistic insights that will facilitate future development of R2-mediated gene insertion tools. Subject terms: Transferases,Protein design,Genetic engineering View Publication -
文献W. Xing et al. (Jul 2025) Stem Cell Research & Therapy 16 4Deletion of p18 INK4c enhances both osteogenesis and hematopoietic supportive capacity of bone marrow mesenchymal stromal cells
p18 INK4 C (CDKN2C,encoded by p18 INK4c or Cdkn2c ) is an early G1-phase cyclin-dependent kinase inhibitor protein. Previous studies demonstrated enhanced self-renewal capacity of hematopoietic stem cells (HSCs) in p18 −/− mice compared to wild-type (WT) mice. Given the critical role of bone marrow niche cells-particularly mesenchymal stromal cells (MSCs)-in hematopoiesis,this study investigated the functional alterations of p18 −/− MSCs and their impact on hematopoietic support. Bone marrow derived MSCs were isolated from p18 −/− and WT mice. Their proliferation and differentiation capacities were assessed,followed by evaluation of hematopoietic support using cobblestone area-forming cell assay and long-term culture-initiating cell assay. RNA sequencing was performed to analyze the transcriptional profile of p18 −/− MSCs,with a focus on differentially expressed genes (DEGs). Key pathways associated with hematopoietic support were identified using Ingenuity Pathway Analysis. A candidate protein was quantified by ELISA,and its functional role in hematopoietic support was validated via a modified coculture system. p18 −/− MSCs displayed an increased proliferation rate,preferential differentiation toward osteogenesis over adipogenesis,and enhanced hematopoietic support. RNA sequencing analysis identified 137 DEGs,with secreted phosphoprotein 1 ( Spp1,encoding osteopontin,Opn) being significantly upregulated in p18 −/− MSCs. Elevated Opn levels were confirmed in both bone marrow and MSC-conditioned media from p18 −/− mice. Functional validation further demonstrated that Opn enhanced the hematopoietic supportive capacity of MSCs in vitro. p18 deficiency promotes osteogenic differentiation and enhances the hematopoietic supportive function of MSCs,likely mediated by Opn upregulation. These findings suggest a potential therapeutic strategy for improving bone regeneration and HSC expansion. The online version contains supplementary material available at 10.1186/s13287-025-04402-6. View Publication -
文献M. Koning et al. (Jul 2025) NPJ Regenerative Medicine 10Single cell transcriptomics of human kidney organoid endothelium reveals vessel growth processes and arterial maturation upon transplantation
Kidney organoids derived from human induced pluripotent stem cells lack a proper vasculature,hampering their applicability. Transplantation prevents the loss of organoid endothelial cells (ECs) observed in vitro,and promotes vascularization. In this study,we transplanted kidney organoids in chicken embryos and deployed single-cell RNA sequencing of ~12,000 organoid ECs to delineate their molecular landscape and identify key changes associated with transplantation. Transplantation significantly altered EC phenotypic composition. Consistent with angiogenesis,proliferating EC populations expanded 8 days after transplantation. Importantly,ECs underwent a major vein-to-arterial phenotypic shift. One of the transplantation-specific arterial EC populations,characterized by laminar shear stress response and Notch signalling,showed a similar transcriptome as human fetal kidney arterial/afferent arteriolar ECs. Consistently,transplantation-induced transcriptional changes involved proangiogenic and arteriogenic SOX7 transcription factor upregulation and regulon enrichment. These findings point to blood flow and candidate transcription factors such as SOX7 as possible targets to enhance kidney organoid vascularization. Subject terms: Nephrons,Transcriptomics,Angiogenesis,Angiogenesis,Stem cells,Stem-cell differentiation View Publication -
文献T. Mukhtar et al. (Jul 2025) Nature Communications 16α7 nicotinic acetylcholine receptors regulate radial glia fate in the developing human cortex
Prenatal nicotine exposure impairs fetal cortical grey matter volume,but the precise cellular mechanisms remain poorly understood. This study elucidates the role of nicotinic acetylcholine receptors (nAChRs) in progenitor cells and radial glia (RG) during human cortical development. We identify two nAChR subunits—CHRNA7 and the human-specific CHRFAM7A—expressed in SOX2+ progenitors and neurons,with CHRFAM7A particularly enriched along RG endfeet. nAChR activation in organotypic slices and dissociated cultures increases RG proliferation while decreasing neuronal differentiation,whereas nAChR knockdown reduces RG and increases neurons. Single-cell RNA sequencing reveals that nicotine exposure downregulates key genes in excitatory neurons (ENs),with CHRNA7 or CHRFAM7A selectively modulating these changes,suggesting an evolutionary divergence in regulatory pathways. Furthermore,we identify YAP1 as a critical downstream effector of nAChR signaling,and inhibiting YAP1 reverses nicotine-induced phenotypic alterations in oRG cells,highlighting its role in nicotine-induced neurodevelopmental pathophysiology. Subject terms: Neuronal development,Developmental neurogenesis,Neural stem cells View Publication -
文献C. A. Clough et al. (Jun 2025) Leukemia 39 8Characterization of E1 enzyme dependencies in mutant- UBA1 human cells reveals UBA6 as a novel therapeutic target in VEXAS syndrome
VEXAS syndrome is a clonal hematopoietic disorder characterized by hyperinflammation,bone marrow failure,and high mortality. The molecular hallmark of VEXAS is somatic mutations at methionine 41 (M41) in the E1 ubiquitin enzyme,UBA1. These mutations induce a protein isoform switch,but the mechanisms underlying disease pathogenesis remain unclear. Here,we developed a human cell model of VEXAS syndrome by engineering the male monocytic THP1 cell line to express the common UBA1 M41V mutation. We found that mutant UBA1 M41V cells exhibit aberrant UBA1 isoform expression,increased vacuolization,and upregulation of the unfolded protein response,recapitulating key features of VEXAS. Moreover,proteomic analyses revealed dysregulated ubiquitination and proteotoxic stress in UBA1 M41V cells,with alterations in inflammatory and stress-response pathways. Functional studies demonstrated that UBA1 M41V cells were highly sensitive to genetic or pharmacological inhibition of E1 ubiquitin enzymes. Treatment with the E1 enzyme inhibitor TAK-243 preferentially suppressed colony formation of UBA1 M41V cells as compared to WT cells. Moreover,UBA1 M41V cells exhibited greater sensitivity to TAK-243 in competition assays and showed increased apoptosis. Interestingly,TAK-243 preferentially inhibited UBA6 activity over UBA1,suggesting that UBA6 may compensate for UBA1 dysfunction in UBA1 M41V cells. Targeting UBA6 using shRNA or the UBA6-specific inhibitor phytic acid further revealed an acquired dependency on UBA6 in UBA1 M41V cells. Phytic acid selectively impaired growth and colony formation in UBA1 M41V cells while sparing WT cells,highlighting a potential therapeutic vulnerability. Together,these findings establish a novel human model of VEXAS syndrome,identify key roles for UBA1 and UBA6 in disease pathogenesis,and demonstrate that UBA6 inhibition represents a promising therapeutic strategy for selectively targeting UBA1 mutant clones. Subject terms: Haematological cancer,Cell signalling View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号