技术资料
-
文献B. Segura-Collar et al. (Jun 2025) eBioMedicine 118 1Comprehensive immune ageing reveals TREM2/TIM3 myeloid cells drive brain immune evasion
Ageing-dependent low-grade inflammation is a hallmark of central nervous system (CNS) diseases. Vascular and immune abnormalities are implicated in the progression of gliomas and occur in the early stages of Alzheimer's disease (AD); however,the mechanisms by which these alterations manifest in the brain parenchyma remain unclear. Using RNAseq,scRNAseq,bioinformatics tools and a cohort of patients with glioma and Alzheimer's disease for validation of results,we have established an analysis of blood–brain barrier (BBB) dysfunction and neuron loss. A mouse model for glioblastoma pathology was also used that reversed BBB disruption and neuron loss,with the incorporation of the IDH mutation. Finally,we established a characterization of the relevant immune populations with an IHC analysis and transcriptional profile. In this study,molecular analyses of the brain ecosystem revealed that blood–brain barrier dysfunction and neuronal synapse integrity exhibit significant threshold-dependent changes that correlate directly and inversely,respectively,with brain ageing (significant changes at 57 years) and the progression of AD and gliomas (survival of 1525 vs 4084 days for patients with High vs Low BBB dysfunction). Using human samples and mouse models,we identified immunoageing processes characterized by an imbalance between pro-inflammatory and anti-inflammatory signals. This dysregulation promotes the extravasation of monocyte-derived macrophages (85% increase of cells),particularly those with a suppressive phenotype,alongside an increase in inflammatory cytokine levels. Notably,our data show that vascular normalization in a glioma model can reverse neuronal loss and attenuate the aggressiveness of the tumours. Finally,tumour development can be prevented by reactivating the ageing immune system. We propose that the ageing brain represents a common,BBB dysfunction-associated process driving chronic inflammation. This inflammation is regulated by TREM2+/TIM3+ suppressive myeloid cells,which play a central role in disease progression. Our findings suggest that targeting these pathways could offer therapeutic strategies to mitigate CNS pathologies linked to ageing,characterized by toxic neuroinflammation and myeloid dysfunction. This study was funded by ISCIII and co-funded by the European Union. View Publication -
文献A. Kumar et al. (Jun 2025) Journal for Immunotherapy of Cancer 13 6Novel fusion superkine, IL-24S/IL-15, enhances immunotherapy of brain cancer
Glioblastoma (GBM) is a rapidly growing,aggressive brain tumor with very poor prognosis without currently effective therapies. The immunosuppressive nature of the tumor microenvironment (TME) in GBM hinders the development of effective tumor-eradicating immunotherapies. This hostile TME can be modulated by administering immune-activating cytokines in combination with agents inducing tumor cell death. To achieve these objectives,we sought to harness the cancer-selective cell death-inducing properties of an enhanced “Superkine” version of melanoma differentiation associated gene-7/interleukin-24,IL-24S,and the immune-activating properties of IL-15 to modulate the TME of GBM to maximize therapeutic outcomes. A fusion “Superkine” ( FSK ) comprised of IL‐24S linked to IL-15 was generated,and antitumor effects were evaluated when transduced by a type 5 adenovirus (Ad.5) in a GBM immunocompetent mouse tumor model. To target the delivery of Ad.5 FSK systemically,we employed an innovative approach of focused ultrasound (FUS) paired with microbubbles (MBs),FUS-DMB (FUS plus double MB),to safely transport the FSK engineered Ad.5 construct into mouse brain to overcome limitations of systemic viral delivery and selectivity of the blood-brain barrier. The FSK stimulated higher tumor regression and enhanced survival in vivo than the individual “Superkine” or cytokine in GBM cancer models. Apoptosis of GBM cells was induced,as well as increased tumor infiltration of T cells,dendritic cells,macrophages and natural killer (NK) cells. The antitumor-inducing activity of FSK is a consequence of induction of cancer-specific growth suppression and induction of apoptosis (IL-24S) as well as diverse effects on immune cells (IL-15 and IL-24S). Antibody neutralization indicates that a primary immune mediator of anticancer activity of FSK is through recruitment and activation of NK cells. Global cytokine analyses indicated no changes in inflammatory cytokines during therapy,suggesting that this strategy will be safe. In summary,treatment with an FSK,consisting of a fusion of IL-24S to IL-15,promotes GBM cell killing and remodeling of the TME by recruiting and activating immune cells supporting the feasibility of developing safe and effective cancer immunotherapeutic fusion proteins and selective delivery in the brain for the therapy of GBM. View Publication -
文献D. Cabañero et al. (Jun 2025) The Journal of Headache and Pain 26 1Cold receptor TRPM8 as a target for migraine-associated pain and affective comorbidities
Genetic variations in the Trpm8 gene that encodes the cold receptor TRPM8 have been linked to protection against polygenic migraine,a disabling condition primarily affecting women. Noteworthy,TRPM8 has been recently found in brain areas related to emotional processing,suggesting an unrecognized role in migraine comorbidities. Here,we use mouse behavioural models to investigate the role of Trpm8 in migraine-related phenotypes. Subsequently,we test the efficacy of rapamycin,a clinically relevant TRPM8 agonist,in these behavioural traits and in human induced pluripotent stem cell (iPSC)-derived sensory neurons. We report that Trpm8 null mice exhibited impulsive and depressive-like behaviours,while also showing frequent pain-like facial expressions detected by an artificial intelligence algorithm. In a nitroglycerin-induced migraine model,Trpm8 knockout mice of both sexes developed anxiety and mechanical hypersensitivity,whereas wild-type females also displayed depressive-like phenotype and hypernociception. Notably,rapamycin alleviated pain-related behaviour through both TRPM8-dependent and independent mechanisms but lacked antidepressant activity,consistent with a peripheral action. The macrolide ionotropically activated TRPM8 signalling in human sensory neurons,emerging as a new candidate for intervention. Together,our findings underscore the potential of TRPM8 for migraine relief and its involvement in affective comorbidities,emphasizing the importance of addressing emotional symptoms to improve clinical outcomes for migraine sufferers,especially in females. The online version contains supplementary material available at 10.1186/s10194-025-02082-4. View Publication -
文献T. Yoshino et al. (Jun 2025) Engineering in Life Sciences 25 6Rapid Recovery and Short‐Term Culture of Gastric Circulating Tumor Cells Using Microcavity Array
Circulating tumor cells (CTCs) hold significant promise for cancer diagnosis,prognosis,and treatment monitoring. We previously developed a technique for a single‐cell filtering device known as the microcavity array (MCA),specifically designed for the efficient recovery of CTCs from whole blood samples. Efficient enrichment and release of cells from the MCA remains challenging because of cell adhesion that occurs on the MCA surface during the enrichment phase. This study investigated the effects of surface modification with 2‐methacryloyloxyethyl phosphorylcholine (MPC) on the recovery efficiency of cancer cell lines from MCA. Scanning electron microscope (SEM) demonstrated reduced cell‐substrate interactions,leading to improved recovery efficiency. Comparative analyses showed that the MCA method provided superior recovery efficiency and reduced processing time compared to traditional methods such as density gradient centrifugation (DGC),while maintaining cell viability and proliferative capacity. CTCs were successfully detected in patients with gastric cancer,and short‐term cultures were achieved even when fewer than 20 CTCs per milliliter of blood were isolated. These findings emphasize the importance of surface modification for enhancing CTC isolation and the need for optimized culture conditions. The optimized MCA method offers a promising approach for rapid CTC recovery and potential integration with automated systems. Practical application : The Microcavity array (MCA) is a device specifically designed for efficient recovery of CTCs from whole blood. However cell adhesion on the MCA surface can limit release efficiency. This study demonstrated that surface modification with MPC signigicantly reduces cell‐substrate adhesion,improving recovery efficiency while maintaining cell viability and proliferative capacity. Compared to traditional density gradient centrifugation,the MPC‐modified MCA offers shorter processing time and better performance. CTCs were successfully detected in gastric cancer,and short‐term cultures were achieved even when fewer than 20 CTCs per mL of blood were isolated. The method supports downstearm applications such as cancer cell characterization and treatment monitoring. With potential for integration into automated system,the optimized MCA provides a practical,scalable solution for clinical liquid biopsy and personalized oncology. View Publication -
文献H. Yang et al. (Jun 2025) Nature Communications 16Bladder cancer variants share aggressive features including a CA125+ cell state and targetable TM4SF1 expression
Histologic variant (HV) subtypes of bladder cancer are clinically aggressive tumors that are more resistant to standard therapy compared to conventional urothelial carcinoma (UC). Little is known about the transcriptional programs that account for their biological differences. Here we show using single cell analysis that HVs harbor a tumor cell state characterized by expression of MUC16 (CA125),MUC4,and KRT24 . This cell state is enriched in metastases,predicted to be highly resistant to chemotherapy,and linked with poor survival. We also find enriched expression of TM4SF1,a transmembrane protein,in HV tumor cells. Chimeric antigen receptor (CAR) T cells engineered against TM4SF1 protein demonstrated in vitro and in vivo activity against bladder cancer cell lines in a TM4SF1 expression-dependent manner,highlighting its potential as a therapeutic target. Subject terms: Bladder cancer,Tumour biomarkers,Targeted therapies View Publication -
文献I. Musante et al. (Jun 2025) Cellular and Molecular Life Sciences: CMLS 82 1CACNA1A loss-of-function affects neurogenesis in human iPSC-derived neural models
CACNA1A encodes the pore-forming α 1A subunit of the Ca V 2.1 calcium channel,whose altered function is associated with various neurological disorders,including forms of ataxia,epilepsy,and migraine. In this study,we generated isogenic iPSC-derived neural cultures carrying CACNA1A loss-of-function mutations differently affecting Ca V 2.1 splice isoforms. Morphological,molecular,and functional analyses revealed an essential role of CACNA1A in neurodevelopmental processes. We found that different CACNA1A loss-of-function mutations produce distinct neurodevelopmental deficits. The F1491S mutation,which is located in a constitutive domain of the channel and therefore causes a complete loss-of-function,impaired neural induction at very early stages,as demonstrated by changes in single-cell transcriptomic signatures of neural progenitors,and by defective polarization of neurons. By contrast,cells carrying the Y1854X mutation,which selectively impacts the synaptically-expressed Ca V 2.1[EFa] isoform,behaved normally in terms of neural induction but showed altered neuronal network composition and lack of synchronized activity. Our findings reveal previously unrecognized roles of CACNA1A in the mechanisms underlying neural induction and neural network dynamics and highlight the differential contribution of the divergent variants Ca V 2.1[EFa] and Ca V 2.1[EFb] in the development of human neuronal cells. The online version contains supplementary material available at 10.1007/s00018-025-05740-7. View Publication -
文献L. V. Reid et al. (May 2025) Frontiers in Cellular and Infection Microbiology 15 1Influenza-induced microRNA-155 expression is altered in extracellular vesicles derived from the COPD epithelium
Influenza virus particularly affects those with chronic lung conditions such as Chronic Obstructive Pulmonary Disease (COPD). Airway epithelial cells are the first line of defense and primary target of influenza infection and release extracellular vesicles (EVs). EVs can transfer of biological molecules such as microRNAs (miRNAs) that can modulate the immune response to viruses through control of the innate and adaptive immune systems. The aim of this work was to profile the EV miRNAs released from bronchial epithelial cells in response to influenza infection and discover if EV miRNA expression was altered in COPD. Influenza infection of air-liquid interface (ALI) differentiated BCi-NS1.1 epithelial cells were characterized by analyzing the expression of antiviral genes,cell barrier permeability and cell death. EVs were isolated by filtration and size exclusion chromatography from the apical surface wash of ALI cultured bronchial epithelial cells. The EV miRNA cargo was sequenced and reads mapped to miRBase. The BCi sequencing results were further investigated by RT-qPCR and by using healthy and COPD primary epithelial cells. Infection of ALI cultured BCi cells with IAV at 3.6 x 10 6 IU/ml for 24 h led to significant upregulation of anti-viral genes without high levels of cell death. EV release from ALI-cultured BCi cells was confirmed using electron microscopy and detection of known tetraspanin EV markers using western blot and the ExoView R100 platform. Differential expression analyses identified 5 miRNA that had a fold change of >0.6: miR-155-5p,miR-122-5p,miR-378a-3p,miR-7-5p and miR-146a-5p (FDR<0.05). Differences between EV,non-EV and cellular levels of these miRNA were detected. Primary epithelial cell release of EV and their miRNA cargo was similar to that observed for BCi. Intriguingly,miR-155 expression was decreased in EVs derived from COPD patients compared to EVs from control samples. Epithelial EV miRNA release may be a key mechanism in modulating the response to IAV in the lungs. Furthermore,changes in EV miRNA expression may play a dysfunctional role in influenza-induced exacerbations of COPD. However,further work to fully characterize the function of EV miRNA in response to IAV in both health and COPD is required. View Publication -
文献D. Skowronek et al. (Jun 2025) Angiogenesis 28 3High-throughput differentiation of human blood vessel organoids reveals overlapping and distinct functions of the cerebral cavernous malformation proteins
Cerebral cavernous malformations (CCMs) are clusters of thin-walled enlarged blood vessels in the central nervous system that are prone to recurrent hemorrhage and can occur in both sporadic and familial forms. The familial form results from loss-of-function variants in the CCM1,CCM2,or CCM3 gene. Despite a better understanding of CCM pathogenesis in recent years,it is still unclear why CCM3 mutations often lead to a more aggressive phenotype than CCM1 or CCM2 variants. By combining high-throughput differentiation of blood vessel organoids from human induced pluripotent stem cells (hiPSCs) with a CCM1,CCM2,or CCM3 knockout,single-cell RNA sequencing,and high-content imaging,we uncovered both shared and distinct functions of the CCM proteins. While there was a significant overlap of differentially expressed genes in fibroblasts across all three knockout conditions,inactivation of CCM1,CCM2,or CCM3 also led to specific gene expression patterns in neuronal,mesenchymal,and endothelial cell populations,respectively. Taking advantage of the different fluorescent labels of the hiPSCs,we could also visualize the abnormal expansion of CCM1 and CCM3 knockout cells when differentiated together with wild-type cells into mosaic blood vessel organoids. In contrast,CCM2 knockout cells showed even reduced proliferation. These observations may help to explain the less severe clinical course in individuals with a pathogenic variant in CCM2 and to decode the molecular and cellular heterogeneity in CCM disease. Finally,the excellent scalability of blood vessel organoid differentiation in a 96-well format further supports their use in high-throughput drug discovery and other biomedical research studies. The online version contains supplementary material available at 10.1007/s10456-025-09985-5. View Publication -
文献H. Q. Marcarian et al. (May 2025) PLOS One 20 5Renal cancer cells acquire immune surface protein through trogocytosis and horizontal gene transfer
Trogocytosis is an underappreciated phenomenon that shapes the immune microenvironment surrounding many types of solid tumors. The consequences of membrane-bound proteins being deposited from a donor immune cell to a recipient cancer cell via trogocytosis are still unclear. Here,we report that human clear cell renal carcinoma tumors stably express the lymphoid markers CD45,CD56,CD14,and CD16. Flow cytometry performed on fresh kidney tumors revealed consistent CD45 expression on tumor cells,as well as varying levels of the other markers mentioned previously. These results were consistent with our immunofluorescent analysis,which also revealed colocalization of lymphoid markers with carbonic anhydrase 9,a standard kidney tumor marker. RNA analysis showed a significant upregulation of genes typically associated with immune cells by tumor cells. Finally,we show evidence of chromosomal DNA being transferred from immune cells to tumor cells through physical contact. This horizontal gene transfer has transcriptional consequences in the recipient tumor cell,resulting in a fusion phenotype that expresses both immune and cancer specific proteins. This work demonstrates a novel mechanism by which tumor cell protein expression is altered through the acquisition of surface membrane fragments and genomic DNA from infiltrating lymphocytes. These results alter the way in which we understand tumor-immune cell interactions and may reveal new insights into the mechanisms by which tumors develop. Additionally,further studies into trogocytosis and other mechanisms of contact-mediated cellular transfer will help push the field towards the next generation of immunotherapies and biomarkers for treating renal cell carcinoma and other cancers. View Publication -
文献F. Borot et al. (May 2025) Nature Communications 16Multiplex base editing to protect from CD33 directed drugs for immune and gene therapy
The selection of genetically engineered immune or hematopoietic cells in vivo after gene editing remains a clinical problem and requires a method to spare on-target toxicity to normal cells. Here,we develop a base editing approach exploiting a naturally occurring CD33 single nucleotide polymorphism leading to removal of full-length CD33 surface expression on edited cells. CD33 editing in human and nonhuman primate hematopoietic stem and progenitor cells protects myeloid progeny from CD33-targeted therapeutics without affecting normal hematopoiesis in vivo,thus demonstrating potential for improved immunotherapies with reduced off-leukemia toxicity. For broader application to gene therapies,we demonstrate highly efficient (>70%) multiplexed adenine base editing of the CD33 and gamma globin genes,resulting in long-term persistence of dual gene-edited cells with HbF reactivation in nonhuman primates. Using the CD33 antibody-drug conjugate Gemtuzumab Ozogamicin,we show resistance of engrafted,multiplex edited human cells in vivo,and a 2-fold enrichment for edited cells in vitro. Together,our results highlight the potential of adenine base editors for improved immune and gene therapies. Subject terms: Haematopoietic stem cells,Bone marrow transplantation,Cell biology View Publication -
文献M. J. Kellner et al. (May 2025) Nature Immunology 26 6Bat organoids reveal antiviral responses at epithelial surfaces
Bats can host viruses of pandemic concern without developing disease. The mechanisms underlying their exceptional resilience to viral infections are largely unresolved,necessitating the development of physiologically relevant and genetically tractable research models. Here,we developed respiratory and intestinal organoids that recapitulated the cellular diversity of the in vivo epithelium present in Rousettus aegyptiacus,the natural reservoir for the highly pathogenic Marburg virus (MARV). In contrast to human counterparts,bat organoids and mucosal tissue exhibited elevated constitutive expression of innate immune effectors,including type I interferon-ε (IFNε) and IFN-stimulated genes (ISGs). Upon infection with diverse zoonotic viruses,including MARV,bat organoids strongly induced type I and III IFN responses,which conferred robust antiviral protection. Type III IFNλ3 additionally displayed virus-independent self-amplification,acting as an ISG to enhance antiviral immunity. Our organoid platform reveals key features of bat epithelial antiviral immunity that may inform therapeutic strategies for viral disease resilience. Subject terms: Mucosal immunology,Viral infection View Publication -
文献Z. Sharafian et al. (May 2025) Frontiers in Immunology 16 1Crosstalk with infant-derived Th17 cells, as well as exposure to IL-22 promotes maturation of intestinal epithelial cells in an enteroid model
The intestinal epithelium of human infants is developmentally immature compared to that of adults. Exactly how this immaturity affects key epithelial functions and their interactions with nearby immune cells remains an understudied area of research,partly due to limited access to non-diseased infant gut tissues. Human intestinal organoids,or “mini guts” generated from tissue stem cells,are promising models for investigating intestinal biology and disease mechanisms. These three-dimensional structures closely mimic their tissue of origin,including cellular physiology and genetics. We have also previously shown that neonatal Th17 cells represent a distinct cell population with a cytokine profile skewed toward IL-22 production rather than IL-17A,as seen in adult Th17 cells. In this study,we sought to model the impact of neonatal-derived Th17 cytokine,namely IL-22 and the intestinal epithelium using infant-derived ileal enteroids. We generated enteroids from ileal biopsies from infants (< 6 months old) and cultured them for seven days with standard organoid growth media,organoid media supplemented with conditioned media from cord-blood-derived Th17 cells,or media supplemented with recombinant IL-22. We assessed morphological changes and conducted transcriptomics profiling via RNAseq. Exposing enteroids to neonatal Th17-cells-derived conditioned media led to enhanced growth,maturation,and differentiation as compared to control media. These effects were ablated when an IL-22 neutralizing antibody was used,while conversely,supplementing with recombinant IL-22 mimicked the Th17 effects,increasing intestinal epithelial cell proliferation and inducing marked differentiation of secretory cells. Our transcriptomic profiling similarly demonstrated significant changes in response to IL-22 with downregulation of Wnt and Notch signaling and upregulation of immune pathways,particularly interferon signaling. The transcriptomic data also suggested that IL-22 treatment led to changes in cell type composition with an increase in stem- and progenitor cells at the expense of enterocytes. Taken together,our data suggests that early-life intestinal development is likely influenced by IL-22-dependent crosstalk between the infant epithelium and exposure to neighboring Th17 cells. This promotes epithelial cell maturation and immune readiness,reflected at both the morphological and molecular levels. Our work also provides a relevant framework for studying healthy infant gut development,which can be further leveraged to examine early-life gastrointestinal disorders,model complex human disease,and therapeutic testing while reducing reliance on animal models. View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号