技术资料
-
文献K. Heo et al. (Mar 2025) Nature Communications 16Non-muscle myosin II inhibition at the site of axon injury increases axon regeneration
Motor axon regeneration following peripheral nerve injury is critical for motor recovery but therapeutic interventions enhancing this are not available. We conduct a phenotypic screen on human motor neurons and identified blebbistatin,a non-muscle myosin II inhibitor,as the most effective neurite outgrowth promotor. Despite its efficacy in vitro,its poor bioavailability limits in vivo application. We,therefore,utilize a blebbistatin analog,NMIIi2,to explore its therapeutic potential for promoting axon regeneration. Local NMIIi2 application directly to injured axons enhances regeneration in human motor neurons. Furthermore,following a sciatic nerve crush injury in male mice,local NMIIi2 administration to the axonal injury site facilitates motor neuron regeneration,muscle reinnervation,and functional recovery. NMIIi2 also promotes axon regeneration in sensory,cortical,and retinal ganglion neurons. These findings highlight the therapeutic potential of topical NMII inhibition for treating axon damage. Subject terms: Regeneration and repair in the nervous system,Movement disorders View Publication -
文献S. Nirgude et al. (Mar 2025) Communications Biology 8Single-nucleus multiomic analysis of Beckwith-Wiedemann syndrome liver reveals PPARA signaling enrichment and metabolic dysfunction
Beckwith-Wiedemann Syndrome (BWS) is an epigenetic overgrowth syndrome caused by methylation changes in the human 11p15 chromosomal locus. Patients with BWS may exhibit hepatomegaly,as well as an increased risk of hepatoblastoma. To understand the impact of these 11p15 changes in the liver,we performed a multiomic study [single nucleus RNA-sequencing (snRNA-seq) + single nucleus assay for transposable-accessible chromatin-sequencing (snATAC-seq)] of both BWS-liver and nonBWS-liver tumor-adjacent tissue. Our approach uncovers hepatocyte-specific enrichment of processes related to peroxisome proliferator—activated receptor alpha (PPARA). To confirm our findings,we differentiated a BWS induced pluripotent stem cell model into hepatocytes. Our data demonstrate the dysregulation of lipid metabolism in BWS-liver,which coincides with observed upregulation of PPARA during hepatocyte differentiation. BWS hepatocytes also exhibit decreased neutral lipids and increased fatty acid β-oxidation. We also observe increased reactive oxygen species byproducts in BWS hepatocytes,coinciding with increased oxidative DNA damage. This study proposes a putative mechanism for overgrowth and cancer predisposition in BWS liver due to perturbed metabolism. Subject terms: Paediatric research,Imprinting View Publication -
文献A. W. Oehm et al. (Mar 2025) Scientific Reports 15Establishment and validation of red fox ( Vulpes vulpes ) airway epithelial cell cultures at the air-liquid-interface
The airway epithelium represents a central barrier against pathogens and toxins while playing a crucial role in modulating the immune response within the upper respiratory tract. Understanding these mechanisms is particularly relevant for red foxes ( Vulpes vulpes ),which serve as reservoirs for various zoonotic pathogens like rabies or the fox tapeworm ( Echinococcus multilocularis ). The study aimed to develop,establish,and validate an air-liquid interface (ALI) organoid model of the fox respiratory tract using primary airway epithelial cells isolated from the tracheas and main bronchi of hunted red foxes. The resulting ALI cultures exhibited a structurally differentiated,pseudostratified epithelium,characterised by ciliated cells,mucus secretion,and tight junctions,as confirmed through histological and immunohistochemical analysis. Functional assessments using a paracellular permeability assay and measurement of transepithelial electrical resistance,demonstrated a tight epithelial barrier. The potential of model’s utility for studying innate immune responses to respiratory infections was validated by exposing the cultures to lipopolysaccharide,phorbol-12-myristate-13-acetate and ionomycin,and nematode somatic antigens. Quantitative PCR revealed notable changes in the expression of pro-inflammatory cytokines TNF and IL-33. This in vitro model represents a significant advancement in respiratory research for non-classical species that may act as important wildlife reservoirs for a range of zoonotic pathogens. View Publication -
文献A. S. Sheth et al. (Apr 2025) Cancer Research Communications 5 4PLK1 Inhibition Induces Synthetic Lethality in Fanconi Anemia Pathway–Deficient Acute Myeloid Leukemia
Overall survival of acute myeloid leukemia (AML) remains limited. Inhibitors of the master mitotic kinase PLK1 have emerged as promising therapeutics,demonstrating efficacy in an undefined subset of patients with AML. However,the clinical success of PLK1 inhibitors remains hindered by a lack of predictive biomarkers. The Fanconi anemia (FA) pathway,a tumor-suppressive network comprised of at least 22 genes,is frequently mutated in sporadic AML. In this study,we demonstrate that FA pathway disruption sensitizes AML cells to PLK1 inhibition. Mechanistically,we identify novel interactions between PLK1 and both FANCA and FANCD2 at mitotic centromeres. We demonstrate that PLK1 inhibition impairs recruitment of FANCD2 to mitotic centromeres,induces damage to mitotic chromosomes,and triggers mitotic collapse in FANCA-deficient cells. Our findings indicate that PLK1 inhibition targets mitotic vulnerabilities specific to FA pathway–deficient cells and implicate FA pathway mutations as potential biomarkers for the identification of patients likely to benefit from PLK1 inhibitors. This work demonstrates that FA pathway mutations,which are frequently observed in sporadic AML,induce hypersensitivity to PLK1 inhibition,providing rationale for a novel synthetic lethal therapeutic strategy for this patient population. View Publication -
文献S. E. Davis et al. (Mar 2025) Pharmacology Research & Perspectives 13 2Differential Effects of IL4I1 Protein on Lymphocytes From Healthy and Multiple Sclerosis Patients
Multiple sclerosis (MS) is a chronic inflammatory disease characterized by immune‐mediated demyelination of the central nervous system,resulting in extensive neurological deficit and remyelination impairment. We have previously found that interleukin‐four induced one (IL4I1) protein modulates CNS inflammation and enhances remyelination in mouse models of experimental demyelination. However,it remained unclear if IL4I1 regulates lymphocyte activity in MS. To assess the therapeutic potential of IL4I1 in MS,we investigated the impact of IL4I1 treatment on human lymphocytes from peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and MS patients. We found that IL4I1 increased the relative densities of Th2 and regulatory T‐cells,while reducing Th17 cell density in healthy control (HC) samples. Furthermore,IL4I1‐treated lymphocytes promoted CNS remyelination when grafted into demyelinated spinal cord lesions in mice. We found that baseline endogenous IL4I1 expression was reduced in people with MS. However,unlike HCs,IL4I1 treatment had no significant effect on IL17 or TOB1 expression in lymphocytes derived from MS patients. These results suggest that IL4I1 skews CD4 + T‐cells to a regulatory state in healthy human lymphocytes,which may be essential for promoting remyelination. However,IL4I1 appears unable to exert its influence on lymphocytes in MS,indicating that impaired IL4I1‐mediated activity may underlie MS pathology. View Publication -
文献Y. Jiang et al. (Mar 2025) Cell & Bioscience 15 3The RNA binding protein CARHSP1 facilitates tumor growth, metastasis and immune escape by enhancing IL-17RA mRNA stabilization in prostate cancer
Calcium-regulated heat-stable protein 1 (CARHSP1) has been identified as a cold shock domain (CSD) protein family member,participating in the regulation of ribosomal translation,mRNA degradation,and the rate of transcription termination. However,there is an extremely limited understanding of the function of CARHSP1 as an RNA binding protein (RBP) in prostate cancer (PCa). The expression pattern of CARHSP1 and the correlation between the CARHSP1 expression and clinical prognosis in PCa patients were analyzed by using multiple public databases. In vitro and in vivo functional assays were conducted to assess the role of CARHSP1. The mechanisms of CARHSP1 function on IL-17RA were identified by RNA pull-down and RNA stability assays. A co-culture model of Jurkat cells and PCa cells was established to investigate the potential role of CARHSP1 in tumor immunity of PCa. CARHSP1 was highly expressed in PCa,and correlated with advanced characteristics of PCa and unfavorable prognosis in PCa patients. Moreover,knockdown of CARHSP1 significantly dampened the capacity of proliferation,migration,invasion,and immune evasion of PCa cells in vitro and in vivo. Mechanistically,the RNA-binding protein CARHSP1 selectively bound to the mRNA of IL-17RA,resulting in the increased expression of both IL-17RA mRNA and protein. Downregulating expression of CARHSP1 shortened the half-life of IL-17RA mRNA and reduced its expression. Subsequently,the downstream pathways of IL-17RA,JAK-STAT3 signaling pathway and NF-κB signaling pathway,were activated by CARHSP1 and contributed to the malignant phenotype of PCa cells. In conclusion,our results demonstrated that the increased expression of CARHSP1 in PCa is correlated with advanced clinical characteristics and unfavorable prognosis,and CARHSP1 may promote the progression of PCa through enhancing the mRNA stability of IL-17RA and activating its downstream pathways. These results suggest that CARHSP1 is an important regulator of tumor microenvironment in PCa,and CARHSP1-IL-17RA axis could be potential novel therapeutic targets for PCa. The online version contains supplementary material available at 10.1186/s13578-025-01371-4. View Publication -
文献Y. Ding et al. (Mar 2025) Journal of Hematology & Oncology 18Disruption of the sorcin‒PAX5 protein‒protein interaction induces ferroptosis by promoting the FBXL12-mediated ubiquitination of ALDH1A1 in pancreatic cancer
Pancreatic cancer is one of the most malignant cancers,and limited therapeutic options are available. The induction of ferroptosis is considered to be a novel,promising strategy that has potential in cancer treatment,and ferroptosis inducers may be new options for eradicating malignant cancers that are resistant to traditional drugs. The exact mechanism underlying the function of sorcin in the initiation and progression of pancreatic cancer remains unclear. The expression of sorcin in cancer tissues was assessed by analyzing TCGA,GEO and immunohistochemical staining data,and the function of sorcin in the induction of ferroptosis in pancreatic cancer cells was investigated. The mechanism underlying the function of sorcin was revealed through proteomics,co-IP,Ch-IP,and luciferase assays. Natural product screening was subsequently performed to screen for products that interact with sorcin to identify new ferroptosis inducers. We first showed that sorcin expression was positively correlated with the survival and tumor stages of patients with pancreatic cancer,and we revealed that sorcin inhibited ferroptosis through its noncalcium binding function. Furthermore,we discovered that sorcin interacted with PAX5 in the cytoplasm and inhibited PAX5 nuclear translocation,which in turn decreased FBXL12 protein expression and then reduced ALDH1A1 ubiquitination,thus inhibiting ferroptosis. Moreover,an in-house natural product screen revealed that celastrol inhibited the interaction of sorcin and PAX5 by directly binding to the Cys194 residue of the sorcin protein; disruption of the sorcin-PAX5 interaction promoted the nuclear translocation of PAX5,induced the expression of FBXL12,increased the ubiquitylation of ALDH1A1,and eventually induced ferroptosis in pancreatic cancer cells. In this study,we revealed the mechanism of action of sorcin,which is a druggable target for inducing ferroptosis,we identified celastrol as a novel agent that induces ferroptosis,and we showed that disrupting the sorcin-PAX5 interaction is a promising therapeutic strategy for treating pancreatic cancer. The online version contains supplementary material available at 10.1186/s13045-025-01680-8. View Publication -
文献F. Ye et al. (Feb 2025) Frontiers in Immunology 16AWT020: a novel fusion protein harnessing PD-1 blockade and selective IL-2 Cis-activation for enhanced anti-tumor immunity and diminished toxicity
The clinical success of the immune checkpoint inhibitor (ICI) targeting programmed cell death protein 1 (PD-1) has revolutionized cancer treatment. However,the full potential of PD-1 blockade therapy remains unrealized,as response rates are still low across many cancer types. Interleukin-2 (IL-2)-based immunotherapies hold promise,as they can stimulate robust T cell expansion and enhance effector function - activities that could synergize potently with PD-1 blockade. Yet,IL-2 therapies also carry a significant drawback: they can trigger severe systemic toxicities and induce immune suppression by expanding regulatory T cells. To overcome the challenges of PD-1 blockade and IL-2 therapies while enhancing safety and efficacy,we have engineered a novel fusion protein,AWT020,combining a humanized anti-PD-1 nanobody and an engineered IL-2 mutein (IL-2c). The IL-2c component of AWT020 has been engineered to exhibit no binding to the IL-2 receptor alpha (IL-2Rα) subunit and attenuated affinity for the IL-2 receptor beta and gamma (IL-2Rβγ) complex,aiming to reduce systemic immune cell activation,thereby mitigating the severe toxicity often associated with IL-2 therapies. The anti-PD-1 antibody portion of AWT020 serves a dual purpose: it precisely delivers the IL-2c payload to tumor-infiltrating T cells while blocking the immune-inhibitory signals mediated by the PD-1 pathway. AWT020 showed significantly enhanced pSTAT5 signaling in PD-1 expressing cells and promoted the proliferation of activated T cells over natural killer (NK) cells. In preclinical studies using both anti-PD-1-sensitive and -resistant mouse tumor models,the mouse surrogate of AWT020 (mAWT020) demonstrated markedly enhanced anti-tumor efficacy compared to an anti-PD-1 antibody,IL-2,or the combination of an anti-PD-1 antibody and IL-2. In addition,the mAWT020 treatment was well-tolerated,with minimal signs of toxicity. Immune profiling revealed that mAWT020 preferentially expands CD8 + T cells within tumors,sparing peripheral T and NK cells. Notably,this selective tumoral T-cell stimulation enables potent tumor-specific T-cell responses,underscoring the molecule’s enhanced efficacy and safety. The AWT020 fusion protein offers a promising novel immunotherapeutic strategy by integrating PD-1 blockade and IL-2 signaling,conferring enhanced anti-tumor activity with reduced toxicity. View Publication -
文献X. Liu et al. (Mar 2025) Stem Cell Research & Therapy 16Purine metabolism in bone marrow microenvironment inhibits hematopoietic stem cell differentiation under microgravity
Spaceflight and microgravity environments have been shown to cause significant health impairments,including bone loss,immune dysfunction,and hematopoietic disorders. Hematopoietic stem cells (HSCs),as progenitors of the hematopoietic system,are critical for the continuous renewal and regulation of immune cells. Therefore,elucidating the regulatory mechanisms governing HSC fate and differentiation in microgravity environments is of paramount importance. In this study,hindlimb unloading (HU) was employed in mice to simulate microgravity conditions. After 28 days of HU,cells were isolated for analysis. Flow cytometry and colony-forming assays were utilized to assess changes in HSC proliferation and differentiation. Additionally,transcriptomic and untargeted metabolomic sequencing were performed to elucidate alterations in the metabolic pathways of the bone marrow microenvironment and their molecular regulatory effects on HSCs fate. Our findings revealed that 28 days of HU impaired hematopoietic function,leading to multi-organ damage and hematological disorders. The simulated microgravity environment significantly increased the HSCs population in the bone marrow,particularly within the long-term and short-term subtypes,while severely compromising the differentiation capacity of hematopoietic stem/progenitor cells. Transcriptomic analysis of HSCs,combined with metabolomic profiling of bone marrow supernatants,identified 1,631 differentially expressed genes and 58 metabolites with altered abundance. Gene set enrichment analysis indicated that HU suppressed key pathways,including hematopoietic cell lineage and MAPK signaling. Furthermore,integrated analyses revealed that metabolites affected by HU,particularly hypoxanthine enriched in the purine metabolism pathway,were closely associated with hematopoietic cell lineage and MAPK signaling pathways. Molecular docking simulations and in vitro experiments confirmed that hypoxanthine interacts directly with core molecules within these pathways,influencing their expression. These findings demonstrate that hypoxanthine in the bone marrow supernatant acts as a signaling mediator under microgravity,influencing HSCs fate by modulating hematopoietic cell lineage and MAPK signaling pathways. This study offers novel insights into the impact of microgravity on HSC fate and gene expression,underscoring the pivotal role of bone marrow microenvironmental metabolic changes in regulating key signaling pathways that determine hematopoietic destiny. The online version contains supplementary material available at 10.1186/s13287-025-04213-9. View Publication -
文献X. Gao et al. (Feb 2025) Respiratory Research 26Activation of Nrf2 pathway by 4-Octyl itaconate enhances donor lung function in cold preservation settings
Lung transplantation is the primary treatment for end-stage lung diseases. However,ischemia-reperfusion injury (IRI) significantly impacts transplant outcomes. 4-Octyl itaconate (4-OI) has shown potential in mitigating organ IRI,although its effects in lung transplantation require further exploration. BEAS-2B cells were used to model transplantation,assessing the effects of 4-OI through viability,apoptosis,and ROS assays. qRT-PCR analyzed cytokine transcription post-cold ischemia/reperfusion (CI/R). RNA sequencing and Gene Ontology analysis elucidated 4-OI’s mechanisms of action,confirmed by Western blotting. ALI-airway and lung transplantation organoid models evaluated improvements in bronchial epithelial morphology and function due to 4-OI. ELISA measured IL-6 and IL-8 levels. Rat models of extended cold preservation and non-heart-beating transplantation assessed 4-OI’s impact on lung function,injury,and inflammation. Our findings indicate that 4-OI (100 µM) during cold preservation effectively maintained cell viability,decreased apoptosis,and reduced ROS production in BEAS-2B cells under CI/R conditions. It also downregulated pro-inflammatory cytokine transcription,including IL1B,IL6,and TNF. Inhibition of Nrf2 partially reversed these protective effects. In cold preservation solutions,4-OI upregulated Nrf2 target genes such as NQO1,HMOX1,and SLC7A11. In ALI airway models,4-OI enhanced bronchial epithelial barrier integrity and ciliary beat function after CI/R. In rat models,4-OI administration improved lung function and reduced pulmonary edema,tissue injury,apoptosis,and systemic inflammation following extended cold preservation or non-heart-beating lung transplantation. Incorporating 4-OI into cold preservation solutions appears promising for alleviating CI/R-induced bronchial epithelial injury and enhancing lung transplant outcomes via Nrf2 pathway activation. The online version contains supplementary material available at 10.1186/s12931-025-03151-7. View Publication -
文献Z. Song et al. (Feb 2025) Genome Biology 26Mapping snoRNA-target RNA interactions in an RNA-binding protein-dependent manner with chimeric eCLIP
Small nucleolar RNAs (snoRNAs) are non-coding RNAs that function in ribosome and spliceosome biogenesis,primarily by guiding modifying enzymes to specific sites on ribosomal RNA (rRNA) and spliceosomal RNA (snRNA). However,many orphan snoRNAs remain uncharacterized,with unidentified or unvalidated targets,and studies on additional snoRNA-associated proteins are limited. We adapted an enhanced chimeric eCLIP approach to comprehensively profile snoRNA-target RNA interactions using both core and accessory snoRNA-binding proteins as baits. Using core snoRNA-binding proteins,we confirmed most annotated snoRNA-rRNA and snoRNA-snRNA interactions in mouse and human cell lines and called novel,high-confidence interactions for orphan snoRNAs. While some of these interactions result in chemical modification,others may have modification-independent functions. We showed that snoRNA ribonucleoprotein complexes containing certain accessory proteins,like WDR43 and NOLC1,enriched for specific subsets of snoRNA-target RNA interactions with distinct roles in ribosome and spliceosome biogenesis. Notably,we discovered that SNORD89 guides 2′-O-methylation at two neighboring sites in U2 snRNA that fine-tune splice site recognition. Chimeric eCLIP of snoRNA-associating proteins enables a comprehensive framework for studying snoRNA-target interactions in an RNA-binding protein-dependent manner,revealing novel interactions and regulatory roles in RNA biogenesis. The online version contains supplementary material available at 10.1186/s13059-025-03508-7. View Publication -
文献Lee et al. (Feb 2025) Stem Cell Research & Therapy 16 1Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model
Induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) have greater potential for generating chondrocytes without hypertrophic and fibrotic phenotypes compared to bone marrow-derived mesenchymal stem/stromal cells (BMSCs). However,there is a lack of research demonstrating the use of autologous iMSCs for repairing articular chondral lesions in large animal models. In this study,we aimed to evaluate the effectiveness of autologous miniature pig (minipig) iMSC-chondrocyte (iMSC-Ch)-laden implants in comparison to autologous BMSC-chondrocyte (BMSC-Ch)-laden implants for cartilage repair in porcine femoral condyles. iMSCs and BMSCs were seeded into fibrin glue/nanofiber constructs and cultured with chondrogenic induction media for 7 days before implantation. To assess the regenerative capacity of the cells,19 skeletally mature Yucatan minipigs were randomly divided into microfracture control,acellular scaffold,iMSC,and BMSC subgroups. A cylindrical defect measuring 7 mm in diameter and 0.6 mm in depth was created on the articular cartilage surface without violating the subchondral bone. The defects were then left untreated or treated with acellular or cellular implants. Both cellular implant-treated groups exhibited enhanced joint repair compared to the microfracture and acellular control groups. Immunofluorescence analysis yielded significant findings,showing that cartilage treated with iMSC-Ch implants exhibited higher expression of COL2A1 and minimal to no expression of COL1A1 and COL10A1,in contrast to the BMSC-Ch-treated group. This indicates that the iMSC-Ch implants generated more hyaline cartilage-like tissue compared to the BMSC-Ch implants. Our findings contribute to filling the knowledge gap regarding the use of autologous iPSC derivatives for cartilage repair in a translational animal model. Moreover,these results highlight their potential as a safe and effective therapeutic strategy. The online version contains supplementary material available at 10.1186/s13287-025-04215-7. View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号