E. Drent et al. (jul 2019)
Clinical cancer research : an official journal of the American Association for Cancer Research 25 13 4014--4025
Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells.
PURPOSE Targeting nonspecific,tumor-associated antigens (TAA) with chimeric antigen receptors (CAR) requires specific attention to restrict possible detrimental on-target/off-tumor effects. A reduced affinity may direct CAR-engineered T (CAR-T) cells to tumor cells expressing high TAA levels while sparing low expressing normal tissues. However,decreasing the affinity of the CAR-target binding may compromise the overall antitumor effects. Here,we demonstrate the prime importance of the type of intracellular signaling on the function of low-affinity CAR-T cells. EXPERIMENTAL DESIGN We used a series of single-chain variable fragments (scFv) with five different affinities targeting the same epitope of the multiple myeloma-associated CD38 antigen. The scFvs were incorporated in three different CAR costimulation designs and we evaluated the antitumor functionality and off-tumor toxicity of the generated CAR-T cells in vitro and in vivo. RESULTS We show that the inferior cytotoxicity and cytokine secretion mediated by CD38 CARs of very low-affinity (Kd {\textless} 1.9 × 10-6 mol/L) bearing a 4-1BB intracellular domain can be significantly improved when a CD28 costimulatory domain is used. Additional 4-1BB signaling mediated by the coexpression of 4-1BBL provided the CD28-based CD38 CAR-T cells with superior proliferative capacity,preservation of a central memory phenotype,and significantly improved in vivo antitumor function,while preserving their ability to discriminate target antigen density. CONCLUSIONS A combinatorial costimulatory design allows the use of very low-affinity binding domains (Kd {\textless} 1 mumol/L) for the construction of safe but also optimally effective CAR-T cells. Thus,very-low-affinity scFvs empowered by selected costimulatory elements can enhance the clinical potential of TAA-targeting CARs.
View Publication
Fiskus W et al. (SEP 2009)
Blood 114 13 2733--43
Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells.
The polycomb repressive complex (PRC) 2 contains 3 core proteins,EZH2,SUZ12,and EED,in which the SET (suppressor of variegation-enhancer of zeste-trithorax) domain of EZH2 mediates the histone methyltransferase activity. This induces trimethylation of lysine 27 on histone H3,regulates the expression of HOX genes,and promotes proliferation and aggressiveness of neoplastic cells. In this study,we demonstrate that treatment with the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep) depletes EZH2 levels,and inhibits trimethylation of lysine 27 on histone H3 in the cultured human acute myeloid leukemia (AML) HL-60 and OCI-AML3 cells and in primary AML cells. DZNep treatment induced p16,p21,p27,and FBXO32 while depleting cyclin E and HOXA9 levels. Similar findings were observed after treatment with small interfering RNA to EZH2. In addition,DZNep treatment induced apoptosis in cultured and primary AML cells. Furthermore,compared with treatment with each agent alone,cotreatment with DZNep and the pan-histone deacetylase inhibitor panobinostat caused more depletion of EZH2,induced more apoptosis of AML,but not normal CD34(+) bone marrow progenitor cells,and significantly improved survival of nonobese diabetic/severe combined immunodeficiency mice with HL-60 leukemia. These findings indicate that the combination of DZNep and panobinostat is effective and relatively selective epigenetic therapy against AML cells.
View Publication
Falco M et al. (JUL 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 1 433--41
Combined genotypic and phenotypic killer cell Ig-like receptor analyses reveal KIR2DL3 alleles displaying unexpected monoclonal antibody reactivity: identification of the amino acid residues critical for staining.
In humans,recent clinical and experimental data from hematopoietic stem cell transplantation revealed that donor-derived alloreactive NK cells exert a beneficial graft versus leukemia effect. The existence of donor-derived alloreactive NK cells can be predicted on the basis of donor killer cell Ig-like receptor (KIR) gene profile and HLA class I typing of both donor and recipient. Moreover,the size of the alloreactive NK cell population can be directly assessed by the combined use of anti-KIR-specific mAb. In this study,in an attempt to improve the definition of alloreactive NK cell subsets,we assessed the KIR genotype and phenotype in a cohort of 44 donors. This approach allowed the identification of two different KIR2DL3 alleles (KIR2DL3*005 and the novel allele KIR2DL3*015) that did not react with the anti-KIR2DL3-specific ECM41 mAb. In contrast,both alleles were recognized at the cell surface by several mAb reacting with KIR2DL2/L3/S2. Notably,KIR2DL3*005 was also stained by the anti-KIR2DL1/S1-specific EB6B and 11PB6 mAb. Functional analysis revealed that,despite its particular mAb reactivity,the specificity of KIR2DL3*005 for HLA-C molecules did not differ from that of other KIR2DL2/L3 alleles. Finally,site-directed mutagenesis demonstrated that glutamine at position 35 is required for ECM41 staining,whereas glutamic acid 35 and arginine 50 are relevant for staining with EB6B or 11PB6 mAb. Our present data represent a substantial progress in the characterization of the NK cell repertoire and an improved phenotypic/functional definition of given KIR(+) subsets.
View Publication
S. Sampath et al. (FEB 2018)
Oncotarget 9 13 11279--11290
Combined modality radiation therapy promotes tolerogenic myeloid cell populations and STAT3-related gene expression in head and neck cancer patients.
Immunomodulation contributes to the antitumor efficacy of the fractionated radiation therapy (RT). Here,we describe immune effects of RT with concurrent systemic cisplatin or cetuximab treatment of patients with stage III-IV head and neck squamous cell carcinoma (HNSCC). Using longitudinally collected blood samples,we identified significant changes in cytokines/chemokines and immune cell populations compared to immune-related gene expression profiles in peripheral blood mononuclear cells (PBMCs). The 7-week combinatorial RT resulted in gradual elevation of proinflammatory mediators (IFNgamma$,IL-6,TNFɑ,CCL2),while levels of IL-12,cytokine essential for antitumor immune responses,were decreased. These effects correlated with progressive accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) with detectable activity of STAT3 and PD-L1 expression,underscoring tolerogenic effects of MDSCs. Correspondingly,gene expression analysis of PBMCs harvested after two weeks of combinatorial RT,found upregulation of several immunosuppressive mediators. These included IL6,IL6R,STAT3 and PDL1,which could represent IL-6/STAT3-driven tolerogenic signaling,which inhibits T cell and NK activity. Overall,our results suggest that potential immunostimulatory effects of combinatorial RT in HNSCC patients are likely limited by tolerogenic STAT3 signaling and PD-L1 upregulation in myeloid immune cells. Further studies will clarify whether STAT3 targeting could augment RT efficacy and durability of antitumor responses.
View Publication
Verreault M et al. (MAR 2013)
PLoS ONE 8 3 e59597
Combined RNAi-Mediated Suppression of Rictor and EGFR Resulted in Complete Tumor Regression in an Orthotopic Glioblastoma Tumor Model
The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM),and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors,and both EGFR and Rictor are associated with increased proliferation,invasion,metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines,including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing,tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan,temozolomide and vincristine. In LN229,co-silencing of EGFR and Rictor resulted in reduced cell migration,and increased sensitivity to vincristine and temozolomide. In U118MG,silencing of Rictor alone was sufficient to increase this line's sensitivity to vincristine and temozolomide. In vivo,while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth,silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective means of treating GBM.
View Publication
J. Liu et al. ( 2022)
Frontiers in immunology 13 835760
Combined Single Cell Transcriptome and Surface Epitope Profiling Identifies Potential Biomarkers of Psoriatic Arthritis and Facilitates Diagnosis via Machine Learning.
Early diagnosis of psoriatic arthritis (PSA) is important for successful therapeutic intervention but currently remains challenging due,in part,to the scarcity of non-invasive biomarkers. In this study,we performed single cell profiling of transcriptome and cell surface protein expression to compare the peripheral blood immunocyte populations of individuals with PSA,individuals with cutaneous psoriasis (PSO) alone,and healthy individuals. We identified genes and proteins differentially expressed between PSA,PSO,and healthy subjects across 30 immune cell types and observed that some cell types,as well as specific phenotypic subsets of cells,differed in abundance between these cohorts. Cell type-specific gene and protein expression differences between PSA,PSO,and healthy groups,along with 200 previously published genetic risk factors for PSA,were further used to perform machine learning classification,with the best models achieving AUROC ?? 0.87 when either classifying subjects among the three groups or specifically distinguishing PSA from PSO. Our findings thus expand the repertoire of gene,protein,and cellular biomarkers relevant to PSA and demonstrate the utility of machine learning-based diagnostics for this disease.
View Publication
Chambers SM et al. (JUL 2012)
Nature biotechnology 30 7 715--20
Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors.
Considerable progress has been made in identifying signaling pathways that direct the differentiation of human pluripotent stem cells (hPSCs) into specialized cell types,including neurons. However,differentiation of hPSCs with extrinsic factors is a slow,step-wise process,mimicking the protracted timing of human development. Using a small-molecule screen,we identified a combination of five small-molecule pathway inhibitors that yield hPSC-derived neurons at textgreater75% efficiency within 10 d of differentiation. The resulting neurons express canonical markers and functional properties of human nociceptors,including tetrodotoxin (TTX)-resistant,SCN10A-dependent sodium currents and response to nociceptive stimuli such as ATP and capsaicin. Neuronal fate acquisition occurs about threefold faster than during in vivo development,suggesting that use of small-molecule pathway inhibitors could become a general strategy for accelerating developmental timing in vitro. The quick and high-efficiency derivation of nociceptors offers unprecedented access to this medically relevant cell type for studies of human pain.
View Publication
(May 2025)
Genome Medicine 17
Combining chromosome conformation capture and exome sequencing for simultaneous detection of structural and single-nucleotide variants
BackgroundEffective molecular diagnosis of congenital diseases hinges on comprehensive genomic analysis,traditionally reliant on various methodologies specific to each variant type—whole exome or genome sequencing for single nucleotide variants (SNVs),array CGH for copy-number variants (CNVs),and microscopy for structural variants (SVs).MethodsWe introduce a novel,integrative approach combining exome sequencing with chromosome conformation capture,termed Exo-C. This method enables the concurrent identification of SNVs in clinically relevant genes and SVs across the genome and allows analysis of heterozygous and mosaic carriers. Enhanced with targeted long-read sequencing,Exo-C evolves into a cost-efficient solution capable of resolving complex SVs at base-pair accuracy.ResultsApplied to 66 human samples Exo-C achieved 100% recall and 73% precision in detecting chromosomal translocations and SNVs. We further benchmarked its performance for inversions and CNVs and demonstrated its utility in detecting mosaic SVs and resolving diagnostically challenging cases.ConclusionsThrough several case studies,we demonstrate how Exo-C’s multifaceted application can effectively uncover diverse causative variants and elucidate disease mechanisms in patients with rare disorders.
Supplementary InformationThe online version contains supplementary material available at 10.1186/s13073-025-01471-3.
View Publication
Niu X et al. (JUN 2016)
Journal of Biological Chemistry 291 32 16576--16585
Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in ??-thalassemia-induced pluripotent stem sells
$$-Thalassemia ($$-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific $$-Thal-induced pluripotent stem cells (iPSCs),correction of the disease-causing mutations in those cells,and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here,we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin $$ (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in $$-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction,we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally,whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore,the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in $$-Thal iPSCs.
View Publication
Povsic TJ et al. (FEB 2009)
American heart journal 157 2 335--44
BACKGROUND: Multiple measures of endothelial progenitor cells (EPCs) have been described,but there has been limited study of the comparability of these assays. We sought to determine the reproducibility of and correlation between alternative EPC assay methodologies. METHODS: We simultaneously assessed EPC numbers in 140 patients undergoing cardiac catheterization using the 2 most commonly used culture techniques: endothelial cell outgrowth and colony-forming unit (CFU). In the final 77 patients,EPCs were also identified on the basis of cell surface marker expression (CD133,CD34,and vascular endothelial growth factor receptor-2 [VEGFR-2]) and aldehyde dehydrogenase (ALDH) activity. RESULTS: Endothelial progenitor cell enumeration based on fluorescence activated cell sorting was more precise than culture assays. There was limited correlation between EPC numbers determined using the 2 common culture-based assays; however,endothelial CFUs correlated with VEGFR-2 and CD34/VEGFR-2-expressing cells. Endothelial progenitor cells defined by expression of CD133,CD34,CD133/CD34,and ALDH activity correlated with each other,but not with VEGFR-2(+) cells. CONCLUSIONS: Endothelial progenitor cells can be broadly classified into 2 classes: VEGFR-2-expressing cells,which give rise to endothelial CFUs,and CD133/CD34 or ALDH(br) cells. These observations underscore the need for better assay standardization and a more precise definition of EPCs in cell therapy research.
View Publication
Archibald PRT et al. (AUG 2016)
Bioprocess and Biosystems Engineering 1--12
Comparability of automated human induced pluripotent stem cell culture: a pilot study
Consistent and robust manufacturing is essential for the translation of cell therapies,and the utilisation automation throughout the manufacturing process may allow for improvements in quality control,scalability,reproducibility and economics of the process. The aim of this study was to measure and establish the comparability between alternative process steps for the culture of hiPSCs. Consequently,the effects of manual centrifugation and automated non-centrifugation process steps,performed using TAP Biosystems' CompacT SelecT automated cell culture platform,upon the culture of a human induced pluripotent stem cell (hiPSC) line (VAX001024c07) were compared. This study,has demonstrated that comparable morphologies and cell diameters were observed in hiPSCs cultured using either manual or automated process steps. However,non-centrifugation hiPSC populations exhibited greater cell yields,greater aggregate rates,increased pluripotency marker expression,and decreased differentiation marker expression compared to centrifugation hiPSCs. A trend for decreased variability in cell yield was also observed after the utilisation of the automated process step. This study also highlights the detrimental effect of the cryopreservation and thawing processes upon the growth and characteristics of hiPSC cultures,and demonstrates that automated hiPSC manufacturing protocols can be successfully transferred between independent laboratories.
View Publication
M. Huyghe et al. (Oct 2024)
Frontiers in Immunology 15 3
Comparative analysis of iPSC-derived NK cells from two differentiation strategies reveals distinct signatures and cytotoxic activities
The ability to generate natural killer (NK) cells from induced pluripotent stem cells (iPSCs) has given rise to new possibilities for the large-scale production of homogeneous immunotherapeutic cellular products and opened new avenues towards the creation of “off-the-shelf” cancer immunotherapies. However,the differentiation of NK cells from iPSCs remains poorly understood,particularly regarding the ontogenic landscape of iPSC-derived NK (iNK) cells produced in vitro and the influence that the differentiation strategy employed may have on the iNK profile. To investigate this question,we conducted a comparative analysis of two sets of iNK cells generated from the same iPSC line using two different protocols: (i) a short-term,clinically compatible feeder-free protocol corresponding to primitive hematopoiesis,and (ii) a lymphoid-based protocol representing the definitive hematopoietic step. Our work demonstrated that both protocols are capable of producing functional iNK cells. However,the two sets of resulting iNKs exhibited distinct phenotypes and transcriptomic profiles. The lymphoid-based differentiation approach generated iNKs with a more mature and activated profile,which demonstrated higher cytotoxicity against cancer cell lines compared to iNK cells produced under short-term feeder-free conditions suggesting that the differentiation strategy must be considered when designing iNK cell–based adoptive immunotherapies.
View Publication