A CD36-dependent non-canonical lipid metabolism program promotes immune escape and resistance to hypomethylating agent therapy in AML
SummaryEnvironmental lipids are essential for fueling tumor energetics,but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here,we find that CD36,a transporter for exogenous lipids,promotes acute myeloid leukemia (AML) immune evasion. We show that,separately from its established role in lipid oxidation,CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway,and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation. Subsequently,NF-κB drives the expression of immunosuppressive genes that inhibit anti-tumor T cell responses. Notably,high-fat-diet or hypomethylating agent decitabine treatment boosts the immunosuppressive potential of AML cells by hijacking CD36-dependent innate immune signaling,leading to a dampened therapeutic effect. This work is of translational interest because lipid restriction by US Food and Drug Administration (FDA)-approved lipid-lowering statin drugs improves the efficacy of decitabine therapy by weakening leukemic CD36-mediated immunosuppression. Graphical abstract Highlights•CD36 on AML cells suppresses T cell proliferation independently of lipid oxidation•OxLDL and palmitate synergize to inhibit T cell activity via CD36 signaling in AML cells•Targeting CD36 signaling with statins improves the efficacy of decitabine therapy in AML Guo et al. find that OxLDL and palmitate uptake by AML cells synergistically upregulates CD36-mediated innate immune signaling to suppress T cell activity. High-fat-diet or decitabine treatment dampened the therapeutic effect by hijacking CD36 signaling. Targeting the CD36 immunosuppressive pathway with statins improves the efficacy of decitabine therapy in AML.
View Publication
Douthwaite J et al. (NOV 2016)
Journal of immunology (Baltimore,Md. : 1950)
A CD80-Biased CTLA4-Ig Fusion Protein with Superior In Vivo Efficacy by Simultaneous Engineering of Affinity, Selectivity, Stability, and FcRn Binding.
Affinity- and stability-engineered variants of CTLA4-Ig fusion molecules with enhanced pharmacokinetic profiles could yield improved therapies with the potential of higher efficacy and greater convenience to patients. In this study,to our knowledge,we have,for the first time,used in vitro evolution to simultaneously optimize CTLA4 affinity and stability. We selected for improved binding to both ligands,CD80 and CD86,and screened as dimeric Fc fusions directly in functional assays to identify variants with stronger suppression of in vitro T cell activation. The majority of CTLA4 molecules showing the largest potency gains in primary in vitro and ex vivo human cell assays,using PBMCs from type 1 diabetes patients,had significant improvements in CD80,but only modest gains in CD86 binding. We furthermore observed different potency rankings between our lead molecule MEDI5265,abatacept,and belatacept,depending on which type of APC was used,with MEDI5265 consistently being the most potent. We then created fusions of both stability- and potency-optimized CTLA4 moieties with human Fc variants conferring extended plasma t1/2 In a cynomolgus model of T cell-dependent Ab response,the CTLA4-Ig variant MEDI5265 could be formulated at textgreater100 mg/ml for s.c. administration and showed superior efficacy and significantly prolonged serum t1/2 The combination of higher stability and potency with prolonged pharmacokinetics could be compatible with very infrequent,s.c. dosing while maintaining a similar level of immune suppression to more frequently and i.v. administered licensed therapies.
View Publication
Burkhardt MF et al. (SEP 2013)
Molecular and Cellular Neuroscience 56 355--364
A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells
Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients' fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modeling for drug screening.
View Publication
Komarov PG et al. (SEP 1999)
Science (New York,N.Y.) 285 5434 1733--7
A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy.
Chemotherapy and radiation therapy for cancer often have severe side effects that limit their efficacy. Because these effects are in part determined by p53-mediated apoptosis,temporary suppression of p53 has been suggested as a therapeutic strategy to prevent damage of normal tissues during treatment of p53-deficient tumors. To test this possibility,a small molecule was isolated for its ability to reversibly block p53-dependent transcriptional activation and apoptosis. This compound,pifithrin-alpha,protected mice from the lethal genotoxic stress associated with anticancer treatment without promoting the formation of tumors. Thus,inhibitors of p53 may be useful drugs for reducing the side effects of cancer therapy and other types of stress associated with p53 induction.
View Publication
Lin T et al. (NOV 2009)
Nature methods 6 11 805--8
A chemical platform for improved induction of human iPSCs.
The slow kinetics and low efficiency of reprogramming methods to generate human induced pluripotent stem cells (iPSCs) impose major limitations on their utility in biomedical applications. Here we describe a chemical approach that dramatically improves (200-fold) the efficiency of iPSC generation from human fibroblasts,within seven days of treatment. This will provide a basis for developing safer,more efficient,nonviral methods for reprogramming human somatic cells.
View Publication
Rajeshkumar NV et al. (SEP 2010)
Molecular cancer therapeutics 9 9 2582--92
A combination of DR5 agonistic monoclonal antibody with gemcitabine targets pancreatic cancer stem cells and results in long-term disease control in human pancreatic cancer model.
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy with one of the worst outcomes among all cancers. PDA often recurs after initial treatment to result in patient death despite the use of chemotherapy or radiation therapy. PDA contains a subset of tumor-initiating cells capable of extensive self-renewal known as cancer stem cells (CSC),which may contribute to therapeutic resistance and metastasis. At present,conventional chemotherapy and radiotherapy are largely ineffective in depleting CSC pool,suggesting the need for novel therapies that specifically target the cancer-sustaining stem cells for tumor eradication and to improve the poor prognosis of PDA patients. In this study,we report that death receptor 5 (DR5) is enriched in pancreatic CSCs compared with the bulk of the tumor cells. Treating a collection of freshly generated patient-derived PDA xenografts with gemcitabine,the first-line chemotherapeutic agent for PDA,is initially effective in reducing tumor size,but largely ineffective in diminishing the CSC populations,and eventually culminated in tumor relapse. However,a combination of tigatuzumab,a fully humanized DR5 agonist monoclonal antibody,with gemcitabine proved to be more efficacious by providing a double hit to kill both CSCs and bulk tumor cells. The combination therapy produced remarkable reduction in pancreatic CSCs,tumor remissions,and significant improvements in time to tumor progression in a model that is considered more difficult to treat. These data provide the rationale to explore the DR5-directed therapies in combination with chemotherapy as a therapeutic option to improve the current standard of care for pancreatic cancer patients.
View Publication
Shi Y et al. (JUN 2008)
Cell stem cell 2 6 525--8
A combined chemical and genetic approach for the generation of induced pluripotent stem cells.
R. Gao et al. (dec 2019)
Pediatric surgery international 35 12 1363--1368
A comparison of exosomes derived from different periods breast milk on protecting against intestinal organoid injury.
AIM OF THE STUDY Human breast milk reduces the risk and severity of necrotizing enterocolitis (NEC). Exosomes are extracellular vesicles (EVs) found in high concentrations in milk,and they mediate intercellular communication and immune responses. The aim of this study is to compare the protective effects of exosomes that are derived from different time periods of breast milk production against intestinal injury using an ex vivo intestinal organoid model. METHODS Colostrum,transitional and mature breast milk samples from healthy lactating mothers were collected. Exosomes were isolated using serial ultracentrifugation and filtration. Exosomes' presence was confirmed using transmission electron microscopy (TEM) and western blot. To form the intestinal organoids,terminal ileum was harvested from neonatal mice pups at postnatal day 9,crypts were isolated and organoids were cultured in matrigel. Organoids were either cultured with exposure to lipopolysaccharide (LPS),or in treatment groups where both LPS and exosomes were added in the culturing medium. Inflammatory markers and organoids viability were evaluated. MAIN RESULTS Human milk-derived exosomes were successfully isolated and characterized. LPS administration reduced the size of intestinal organoids,induced inflammation through increasing TNF$\alpha$ and TLR4 expression,and stimulated intestinal regeneration. Colostrum,transitional and mature human milk-derived exosome treatment all prevented inflammatory injury,while exosomes derived from colostrum were most effective at reducing inflammatory cytokine. CONCLUSIONS Human breast milk-derived exosomes were able to protect intestine organoids against epithelial injury induced by LPS. Colostrum exosomes offer the best protective effect among the breast-milk derived exosomes. Human milk exosomes can be protective against the development of intestinal injury such as that seen in NEC.
View Publication
(Nov 2024)
Tomography 10 11
A Comparison of the Sensitivity and Cellular Detection Capabilities of Magnetic Particle Imaging and Bioluminescence Imaging
Background: Preclinical cell tracking is enhanced with a multimodal imaging approach. Bioluminescence imaging (BLI) is a highly sensitive optical modality that relies on engineering cells to constitutively express a luciferase gene. Magnetic particle imaging (MPI) is a newer imaging modality that directly detects superparamagnetic iron oxide (SPIO) particles used to label cells. Here,we compare BLI and MPI for imaging cells in vitro and in vivo. Methods: Mouse 4T1 breast carcinoma cells were transduced to express firefly luciferase,labeled with SPIO (ProMag),and imaged as cell samples after subcutaneous injection into mice. Results: For cell samples,the BLI and MPI signals were strongly correlated with cell number. Both modalities presented limitations for imaging cells in vivo. For BLI,weak signal penetration,signal attenuation,and scattering prevented the detection of cells for mice with hair and for cells far from the tissue surface. For MPI,background signals obscured the detection of low cell numbers due to the limited dynamic range,and cell numbers could not be accurately quantified from in vivo images. Conclusions: It is important to understand the shortcomings of these imaging modalities to develop strategies to improve cellular detection sensitivity.
View Publication
Tsuboi S (JUN 2006)
Journal of immunology (Baltimore,Md. : 1950) 176 11 6576--85
A complex of Wiskott-Aldrich syndrome protein with mammalian verprolins plays an important role in monocyte chemotaxis.
The Wiskott-Aldrich syndrome protein (WASP) is a product of the gene defective in an Xid disorder,Wiskott-Aldrich syndrome. WASP expression is limited to hemopoietic cells,and WASP regulates the actin cytoskeleton. It has been reported that monocytes/macrophages from WASP-deficient Wiskott-Aldrich syndrome patients are severely defective in chemotaxis,resulting in recurrent infection. However,the molecular basis of such chemotactic defects is not understood. Recently,the WASP N-terminal region was found to bind to the three mammalian verprolin homologs: WASP interacting protein (WIP); WIP and CR16 homologous protein (WICH)/WIP-related protein (WIRE); and CR16. Verprolin was originally found to play an important role in the regulation of actin cytoskeleton in yeast. We have shown that WASP,WIP,and WICH/WIRE are expressed predominantly in the human monocyte cell line THP-1 and that WIP and WICH/WIRE are involved in monocyte chemotaxis. When WASP binding to verprolins was blocked,chemotactic migration of monocytes was impaired in both THP-1 cells and primary human monocytes. Increased expression of WASP and WIP enhanced monocyte chemotaxis. Blocking WASP binding to verprolins impaired cell polarization but not actin polymerization. These results indicate that a complex of WASP with mammalian verprolins plays an important role in chemotaxis of monocytes. Our results suggest that WASP and mammalian verprolins function as a unit in monocyte chemotaxis and that the activity of this unit is critical to establish cell polarization. In addition,our results also indicate that the WASP-verprolin complex is involved in other functions such as podosome formation and phagocytosis.
View Publication
Li Y et al. (MAR 2015)
PLoS ONE 10 3 e0118266
A comprehensive library of familial human amyotrophic lateral sclerosis induced pluripotent stem cells
Amyotrophic lateral sclerosis is a progressive disease characterized by the loss of upper and lower motor neurons,leading to paralysis of voluntary muscles. About 10% of all ALS cases are familial (fALS),among which 15-20% are linked to Cu/Zn superoxide dismutase (SOD1) mutations,usually inherited in an autosomal dominant manner. To date only one FDA approved drug is available which increases survival moderately. Our understanding of ALS disease mechanisms is largely derived from rodent model studies,however due to the differences between rodents and humans,it is necessary to have humanized models for studies of disease pathogenesis as well as drug development. Therefore,we generated a comprehensive library of a total 22 of fALS patient-specific induced pluripotent stem cell (iPSC) lines. These cells were thoroughly characterized before being deposited into the library. The library of cells includes a variety of C9orf72 mutations,sod1 mutations,FUS,ANG and FIG4 mutations. Certain mutations are represented with more than one line,which allows for studies of variable genetic backgrounds. In addition,these iPSCs can be successfully differentiated to astroglia,a cell type known to play a critical role in ALS disease progression. This library represents a comprehensive resource that can be used for ALS disease modeling and the development of novel therapeutics.
View Publication
A Comprehensive Structure-Function Study of Neurogenin3 Disease-Causing Alleles during Human Pancreas and Intestinal Organoid Development.
Neurogenin3 (NEUROG3) is required for endocrine lineage formation of the pancreas and intestine. Patients with NEUROG3 mutations are born with congenital malabsorptive diarrhea due to complete loss of enteroendocrine cells,whereas endocrine pancreas development varies in an allele-specific manner. These findings suggest a context-dependent requirement for NEUROG3 in pancreas versus intestine. We utilized human tissue differentiated from NEUROG3-/- pluripotent stem cells for functional analyses. Most disease-associated alleles had hypomorphic or null phenotype in both tissues,whereas the S171fsX68 mutation had reduced activity in the pancreas but largely null in the intestine. Biochemical studies revealed NEUROG3 variants have distinct molecular defects with altered protein stability,DNA binding,and gene transcription. Moreover,NEUROG3 was highly unstable in the intestinal epithelium,explaining the enhanced sensitivity of intestinal defects relative to the pancreas. These studies emphasize that studies of human mutations in the endogenous tissue context may be required to assess structure-function relationships.
View Publication