Li et al. (Oct 2025)
Journal of Hematology & Oncology 18
Targeting triple-negative breast cancer using cord-blood CD34⁺ HSPC-derived mesothelin-specific CAR-NKT cells with potent antitumor activity
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of ER,PR,and HER2 expression. Its aggressive behavior,high degree of tumor heterogeneity,and immunosuppressive tumor microenvironment (TME) are associated with poor clinical outcomes,rapid disease progression,and limited therapeutic options. Although chimeric antigen receptor (CAR)-engineered T cell therapy has shown certain promise,its applicability in TNBC is hindered by antigen escape,TME-mediated suppression,and the logistical constraints of autologous cell production. In this study,we employed hematopoietic stem and progenitor cell (HSPC) gene engineering and a feeder-free HSPC differentiation culture to generate allogeneic IL-15-enhanced,mesothelin-specific CAR-engineered invariant natural killer T ( Allo15 MCAR-NKT) cells. These cells demonstrated robust and multifaceted antitumor activity against TNBC,mediated by CAR- and NK receptor-dependent cytotoxicity,as well as selective targeting of CD1d + TME immunosuppressive cells through their TCR. In both orthotopic and metastatic TNBC xenograft models,Allo15 MCAR-NKT cells demonstrated potent antitumor activity,associated with robust effector and cytotoxic phenotypes,low exhaustion,and a favorable safety profile without inducing graft-versus-host disease. Together,these results support Allo15 MCAR-NKT cells as a next-generation,off-the-shelf immunotherapy with strong therapeutic potential for TNBC,particularly in the context of metastasis,immune evasion,and treatment resistance. The online version contains supplementary material available at 10.1186/s13045-025-01736-9.
View Publication
文献
A. Becerra-Calixto et al. (Oct 2025)
Journal of Neuroinflammation 22
A neuroimmune cerebral assembloid model to study the pathophysiology of familial Alzheimer’s disease
Alzheimer’s disease (AD) is the leading cause of dementia globally. The accumulation of amyloid and tau proteins,neuronal cell death and neuroinflammation are seen with AD progression,resulting in memory and cognitive impairment. Microglia are crucial for AD progression as they engage with neural cells and protein aggregates to regulate amyloid pathology and neuroinflammation. Recent studies indicate that microglia contribute to the propagation of amyloid beta (Aβ) via their immunomodulatory functions including Aβ phagocytosis and inflammatory cytokine production. Three-dimensional cell culture techniques provide the opportunity to study pathophysiological changes in AD in human-derived samples that are difficult to recapitulate in animal models (e.g.,transgenic mice). However,these models often lack immune cells such as microglia,which play a critical role in AD pathophysiology. In this study,we developed a neuroimmune assembloid model by integrating cerebral organoids (COs) with induced microglia-like cells (iMGs) derived from human induced pluripotent stem cells from familial AD patient with PSEN2 mutation. After 120 days in culture,we found that iMGs were successfully integrated within the COs. Interestingly,our assembloids displayed histological,functional and transcriptional features of the pro-inflammatory environment seen in AD,including amyloid plaque-like and neurofibrillary tangle-like structures,reduced microglial phagocytic capability,and enhanced neuroinflammatory and apoptotic gene expression. In conclusion,our neuroimmune assembloid model effectively replicates the inflammatory phenotype and amyloid pathology seen in AD. The online version contains supplementary material available at 10.1186/s12974-025-03544-x.
View Publication
文献
Kim et al. (Oct 2025)
Scientific Reports 15
Attenuation of natural killer cell cytotoxicity by interaction between NKp30 of NK cells and dipeptidase 1 of colon cancer cells
Natural killer (NK) cells play a crucial role in immune surveillance by recognizing and eliminating tumor cells. However,tumors employ various mechanisms to evade NK cell-mediated immunity. NKp30 is a potent activating receptor on NK cells,but its function can be inhibited by specific ligands secreted by cancer cells. Here,we identified dipeptidase 1 (DPEP1) as a novel ligand for NKp30 in KM12C colon cancer cells,using co-immunoprecipitation,confocal microscopy,and flow cytometry. We examined how the DPEP1–NKp30 interaction affects NK cell activity and found that NK cytotoxicity increased in KM12C cells with DPEP1 knockdown but was significantly reduced in HCT116 cells overexpressing DPEP1. We further demonstrated that DPEP1 is secreted via extracellular vesicles and that its interaction with NKp30 suppressed the expression and secretion of perforin 1,granzyme B,CD107a,and interferon-γ in NK92 cells. In a xenograft mouse model treated with NK92 cells,tumors derived from HCT116/DPEP1 cells were significantly larger than those from HCT116/mock cells. Using peripheral blood-derived human NK cells,we confirmed that DPEP1 inhibited both cytotoxicity and granzyme B secretion. These findings suggest that disrupting the DPEP1–NKp30 interaction may enhance NK cell-mediated cytotoxicity and represent a novel therapeutic strategy for cancer immunotherapy. The online version contains supplementary material available at 10.1038/s41598-025-18475-z.
View Publication
文献
Y. Wang et al. (Sep 2025)
Stem Cell Research & Therapy 16 10318
The PCNA inhibitor AOH1996 suppresses cancer stemness and enhances anti-PD1 immunotherapy in squamous cell carcinoma
Proliferating cell nuclear antigen (PCNA),a well-documented anticancer target,is critical for DNA synthesis,replication,and repair. AOH1996,a small-molecule PCNA inhibitor,is currently undergoing clinical trials for the treatment of advanced solid tumors. However,the therapeutic effect of AOH1996 on head and neck squamous cell carcinoma (HNSCC) remains unclear. The effects of AOH1996 on HNSCC biological behaviors and cancer stemness were tested in HNSCC cells and nude mice. The combination treatment of AOH1996 and anti-PD1 was performed in a 4-nitroquinoline N-oxide (4NQO)-induced HNSCC mouse model. RNA sequencing,Western Blotting,immunofluorescence staining,comet assays,and qRT‒PCR were conducted for mechanistic studies. Our results showed that AOH1996 effectively inhibited HNSCC proliferation and invasion both in vitro and in vivo. AOH1996 suppressed HNSCC stemness,development,and metastasis. Moreover,AOH1996 altered the tumor immune microenvironment into an inflamed state with increased CD8 + T-cell infiltration,rendering it a favorable partner for combination therapy with immune checkpoint inhibitors. Mechanistically,AOH1996 induced cellular DNA damage,suppressed cancer stemness through the upregulation of p-TBK1,and promoted the secretion of CD8 + T-cell-recruiting chemokines by stimulating IRF3-mediated transcription. Taken together,our results demonstrated that AOH1996 suppressed tumor growth,eliminated cancer stem cells (CSCs),and synergistically enhanced the efficacy of anti-PD1 immunotherapy in HNSCC. The online version contains supplementary material available at 10.1186/s13287-025-04607-9.
View Publication
文献
M. E. Cooke et al. (Oct 2025)
Biofabrication 17 4
Tailoring agarose fluid gels for use in suspension bath bioprinting and culture of spheroid-based bioinks
Suspension bath bioprinting,whereby bioinks are extruded into a yield stress bath with rapid recovery from shearing,has enabled the printing of low viscosity bioinks into constructs with high geometric complexity. Previous studies have often relied upon external stabilisation of the suspension bath (e.g. collagen) in order to culture soft materials without loss of printed structure. Here,we report a systematic investigation of suspension bath properties that support the printing,fusion,and culture of spheroid-based bioinks without added stabilisation. Specifically,agarose fluid gels of varied polymer concentrations and dilutions were produced and characterised morphologically and rheologically. Juvenile bovine chondrocytes or mesenchymal stromal cells (MSCs) were formed into spheroids of ∼150 µ m in diameter and investigated within agarose suspension baths either for their fusion in hanging drop cultures or as jammed bioinks. MSC spheroids were also printed when mixed with hydrogel microparticles to demonstrate additional versatility to the approach. Suspension baths of lower polymer concentrations and increased dilution enabled faster spheroid fusion; however,the most heavily diluted suspension bath was unable to maintain print fidelity. Other formulations supported the printing,fusion,and culture of spheroid-based inks,either as simple lines or more complex patterns. These findings help to inform the design of suspension baths for bioprinting and culture.
View Publication
文献
Z. Li et al. (Sep 2025)
Journal of Asthma and Allergy 18 4
Inhibition of LOXL2 Suppresses Nasal Mucosal Inflammation and Remodeling in Allergic Rhinitis
Tissue remodeling is a key feature of allergic rhinitis (AR),but its underlying molecular mechanisms remain unclear. Lysyl oxidase-like 2 (LOXL2),a regulator of tissue remodeling,has not been studied in AR. Proteomic analysis was performed on nasal mucosal tissues from 8 AR patients and 8 healthy controls (HCs) to identify differentially expressed proteins (DEPs). The top three upregulated DEPs and their association with tissue remodeling markers were validated by immunofluorescence,Western blot,and RT-qPCR in an independent cohort of 30 AR patients and 30 HCs. In vitro,human nasal epithelial cells (HNECs) were treated with IL-4,and the effects of candidate protein inhibitors on remodeling were assessed. An AR mouse model was used to evaluate the impact of these inhibitors on nasal inflammation and remodeling. Proteomic analysis revealed a disease-specific protein expression profile in the nasal mucosa of AR patients,with the top three upregulated proteins being LOXL2,TGF-β1,and TIRAP. Tissue validation showed that LOXL2 was significantly upregulated in the nasal mucosa of AR patients compared to HCs and was significantly correlated with EMT markers (TGF-β1,α-SMA,and E-cadherin). In vitro,IL-4 stimulation significantly upregulated LOXL2,TGF-β1,and α-SMA,while downregulating E-cadherin in a dose-dependent manner in human nasal epithelial cells. These effects were reversed by inhibition of LOXL2. Further investigations demonstrated that LOXL2 promotes tissue remodeling through activation of the TGF-β1/Smad signaling pathway. In the AR mouse model,LOXL2 inhibitors significantly reduced nasal mucosal inflammation and tissue remodeling. Our proteomic analysis suggests that LOXL2 may be involved in the pathological remodeling processes of AR,potentially through modulation of the TGF-β1/Smad signaling pathway. These findings provide preliminary evidence that LOXL2 could serve as a candidate biomarker and a possible therapeutic target in AR,warranting further investigation.
View Publication
文献
S. Trushin et al. (Sep 2025)
eBioMedicine 120 4
Therapeutic assessment of a novel mitochondrial complex I inhibitor in in vitro and in vivo models of Alzheimer's disease
Despite recent approval of monoclonal antibodies that reduce amyloid (Aβ) accumulation,the development of disease-modifying strategies targeting the underlying mechanisms of Alzheimer's disease (AD) is urgently needed. We demonstrate that mitochondrial complex I (mtCI) represents a druggable target,where its weak inhibition activates neuroprotective signalling,benefiting AD mouse models with Aβ and p-Tau pathologies. Rational design and structure‒activity relationship studies yielded mtCI inhibitors profiled in a drug discovery funnel designed to address safety,selectivity,and efficacy. The lead compound C458 is highly protective against Aβ toxicity,has favourable pharmacokinetics,and minimal off-target effects. C458 exhibited excellent brain penetrance,activating neuroprotective pathways with a single dose. Preclinical studies in APP/PS1 mice were conducted using functional tests,metabolic assessment,in vivo 31 P-NMR spectroscopy,blood cytokine panels,ex vivo electrophysiology,and Western blotting. Chronic oral administration improved long-term potentiation,reduced oxidative stress and inflammation,and enhanced mitochondrial biogenesis,antioxidant signalling,and cellular energetics. Efficacy against Aβ and p-Tau was confirmed in human organoids. These studies provide further evidence that the restoration of mitochondrial function in response to mild energetic stress represents a promising disease-modifying strategy for AD. This research was supported by grants from NIH AG 5549-06,NS1 07265,AG 062135,UG3/UH3 NS 113776,and ADDF 291204 (all to ET); U19 AG069701 (to TK); the Alzheimer’s Association Research Fellowship grant 23AARF-1027342 (to TKON).
View Publication
文献
T. Nosaka et al. (Aug 2025)
Cancers 17 17
Clinical Significance of CD90(+) Circulating Tumor Cells as Dynamic Biomarkers in Unresectable Hepatocellular Carcinoma Treated with Atezolizumab/Bevacizumab and Lenvatinib
Atezolizumab plus bevacizumab and lenvatinib are standard treatments for unresectable hepatocellular carcinoma; however,tumor markers such as alpha-fetoprotein and des-gamma-carboxy prothrombin have a limited ability to reflect treatment responses. Circulating tumor cells are non-invasive biomarkers associated with cancer stemness and treatment resistance. We assessed circulating tumor cell subsets expressing cancer stem cell markers (CD90,epithelial cell adhesion molecule,CD133,vimentin) using multiparametric flow cytometry at early and maximal response phases in patients receiving atezolizumab plus bevacizumab or lenvatinib. Early decreases in CD90-positive circulating tumor cells after therapy initiation were associated with tumor shrinkage and longer progression-free survival in both groups,as well as prolonged overall survival in the atezolizumab plus bevacizumab group. At maximal response,changes in CD90-positive circulating tumor cells reflected tumor burden more accurately than alpha-fetoprotein or des-gamma-carboxy prothrombin. These findings highlight the potential of CD90-positive circulating tumor cells to become dynamic biomarkers in systemic therapy for unresectable hepatocellular carcinoma.
View Publication