SummaryInterleukin-33 (IL-33) is an immunoregulatory cytokine that moderately suppresses experimental autoimmune encephalomyelitis (EAE),a murine model of multiple sclerosis (MS). However,poor pharmacokinetics and toxicity hinder its clinical translation. To address these limitations,we develop an activity-attenuated IL-33 by recombinant fusion to serum albumin (SA). SA-IL-33 exhibits reduced toxicity and prolonged residence in the secondary lymphoid organs (SLOs),sites of T cell priming in autoimmunity,compared to wild-type (WT) IL-33. Prophylactic SA-IL-33 administration prevents EAE with superior efficacy to WT IL-33 and comparable efficacy to fingolimod (FTY720),a Food and Drug Administration (FDA)-approved MS drug. Therapeutic SA-IL-33 treatment also reduces disease severity in both chronic and relapsing-remitting EAE. SA-IL-33 modulates immunity in EAE by suppressing CD45+ cell infiltration (including myelin-reactive T helper 17 [TH17] cells) in the spinal cord,while expanding type 2 immune cells (including type 2 innate lymphoid cells [ILC2s],ST2+ regulatory T cells [Tregs],T helper 2 [TH2] cells,and M2-polarized macrophages) in the SLOs. These findings suggest that SA-IL-33 is a promising therapeutic for neuroinflammatory diseases. Graphical abstract Highlights•Fusion of serum albumin (SA) to interleukin-33 (IL-33) attenuates its activity and toxicity•Engineered SA-IL-33 exhibits prolonged residence in the secondary lymphoid organs (SLOs)•SA-IL-33 treatment both prevents the onset of and reduces established neuroinflammation in mice•Cytokine therapy suppresses TH17 cells in the CNS and promotes immunoregulation in the SLOs The clinical utility of interleukin-33 is hindered by poor pharmacokinetics and toxicity. Budina et al. develop a fusion of serum albumin and interleukin-33 (SA-IL-33) with reduced toxicity and prolonged lymph node residence. SA-IL-33 prevents the onset of and suppresses established inflammation-mediated paralysis in mice,demonstrating promise as a therapeutic for neuroinflammatory diseases.
View Publication
Kitagawa D et al. ( 2013)
Genes to cells : devoted to molecular & cellular mechanisms 18 2 110--122
Activity-based kinase profiling of approved tyrosine kinase inhibitors.
The specificities of nine approved tyrosine kinase inhibitors (imatinib,dasatinib,nilotinib,gefitinib,erlotinib,lapatinib,sorafenib,sunitinib,and pazopanib) were determined by activity-based kinase profiling using a large panel of human recombinant active kinases. This panel consisted of 79 tyrosine kinases,199 serine/threonine kinases,three lipid kinases,and 29 disease-relevant mutant kinases. Many potential targets of each inhibitor were identified by kinase profiling at the K(m) for ATP. In addition,profiling at a physiological ATP concentration (1 mm) was carried out,and the IC(50) values of the inhibitors against each kinase were compared with the estimated plasma-free concentration (calculated from published pharmacokinetic parameters of plasma C(trough) and C(max) values). This analysis revealed that the approved kinase inhibitors were well optimized for their target kinases. This profiling also implicates activity at particular off-target kinases in drug side effects. Thus,large-scale kinase profiling at both K(m) and physiological ATP concentrations could be useful in characterizing the targets and off-targets of kinase inhibitors.
View Publication
Calabrese B et al. (APR 2014)
PLoS ONE 9 4 e94787
Activity-Dependent Dendritic Spine Shrinkage and Growth Involve Downregulation of Cofilin via Distinct Mechanisms
A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage,and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However,the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely,during activity-dependent spine growth,LIM kinase stimulates cofilin phosphorylation,which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity.
View Publication
U. Cuhadar et al. (May 2024)
Cell Reports 43 5
Activity-driven synaptic translocation of LGI1 controls excitatory neurotransmission
The fine control of synaptic function requires robust trans-synaptic molecular interactions. However,it remains poorly understood how trans-synaptic bridges change to reflect the functional states of the synapse. Here,we develop optical tools to visualize in firing synapses the molecular behavior of two trans-synaptic proteins,LGI1 and ADAM23,and find that neuronal activity acutely rearranges their abundance at the synaptic cleft. Surprisingly,synaptic LGI1 is primarily not secreted,as described elsewhere,but exo- and endocytosed through its interaction with ADAM23. Activity-driven translocation of LGI1 facilitates the formation of trans-synaptic connections proportionally to the history of activity of the synapse,adjusting excitatory transmission to synaptic firing rates. Accordingly,we find that patient-derived autoantibodies against LGI1 reduce its surface fraction and cause increased glutamate release. Our findings suggest that LGI1 abundance at the synaptic cleft can be acutely remodeled and serves as a critical control point for synaptic function.
View Publication
Brigidi GS et al. (SEP 2015)
Nature communications 6 8200
Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5.
Synaptic plasticity is mediated by the dynamic localization of proteins to and from synapses. This is controlled,in part,through activity-induced palmitoylation of synaptic proteins. Here we report that the ability of the palmitoyl-acyl transferase,DHHC5,to palmitoylate substrates in an activity-dependent manner is dependent on changes in its subcellular localization. Under basal conditions,DHHC5 is bound to PSD-95 and Fyn kinase,and is stabilized at the synaptic membrane through Fyn-mediated phosphorylation of a tyrosine residue within the endocytic motif of DHHC5. In contrast,DHHC5's substrate,δ-catenin,is highly localized to dendritic shafts,resulting in the segregation of the enzyme/substrate pair. Neuronal activity disrupts DHHC5/PSD-95/Fyn kinase complexes,enhancing DHHC5 endocytosis,its translocation to dendritic shafts and its association with δ-catenin. Following DHHC5-mediated palmitoylation of δ-catenin,DHHC5 and δ-catenin are trafficked together back into spines where δ-catenin increases cadherin stabilization and recruitment of AMPA receptors to the synaptic membrane.
View Publication
Ankam S et al. (APR 2015)
Biomaterials 47 20--28
Actomyosin contractility plays a role in MAP2 expression during nanotopography-directed neuronal differentiation of human embryonic stem cells
Pluripotent human embryonic stem cells (hESCs) have the capability of differentiating into different lineages based on specific environmental cues. We had previously shown that hESCs can be primed to differentiate into either neurons or glial cells,depending on the arrangement,geometry and size of their substrate topography. In particular,anisotropically patterned substrates like gratings were found to favour the differentiation of hESCs into neurons rather than glial cells. In this study,our aim is to elucidate the underlying mechanisms of topography-induced differentiation of hESCs towards neuronal lineages. We show that high actomyosin contractility induced by a nano-grating topography is crucial for neuronal maturation. Treatment of cells with the myosin II inhibitor (blebbistatin) and myosin light chain kinase inhibitor (ML-7) greatly reduces the expression level of microtubule-associated protein 2 (MAP2). On the other hand,our qPCR array results showed that PAX5,BRN3A and NEUROD1 were highly expressed in hESCs grown on nano-grating substrates as compared to unpatterned substrates,suggesting the possible involvement of these genes in topography-mediated neuronal differentiation of hESCs. Interestingly,YAP was localized to the cytoplasm of differentiating hESCs. Taken together,our study has provided new insights in understanding the mechanotransduction of topographical cues during neuronal differentiation of hESCs.
View Publication
Zhang P et al. (FEB 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 3 1568--76
Acute alcohol intoxication inhibits the lineage- c-kit+ Sca-1+ cell response to Escherichia coli bacteremia.
Alcohol abuse predisposes the host to bacterial infections. In response to bacterial infection,the bone marrow hematopoietic activity shifts toward granulocyte production,which is critical for enhancing host defense. This study investigated the hematopoietic precursor cell response to bacteremia and how alcohol affects this response. Acute alcohol intoxication was induced in BALB/c mice 30 min before initiation of Escherichia coli bacteremia. Bacteremia caused a significant increase in the number of bone marrow lineage (lin(-))-c-kit(+)Sca-1(+) cells. Marrow lin(-)c-kit(+)Sca-1(+) cells isolated from bacteremic mice showed an increase in CFU-granulocyte/macrophage activity compared with controls. In addition to enhanced proliferation of lin(-)c-kit(+)Sca-1(+) cells as reflected by BrdU incorporation,phenotypic inversion of lin(-)c-kit(+)Sca-1(+)Sca-1(-) cells primarily accounted for the rapid increase in marrow lin(-)c-kit(+)Sca-1(+) cells following bacteremia. Bacteremia increased plasma concentration of TNF-alpha. Culture of marrow lin(-)c-kit(+)Sca-1(+)Sca-1(-) cells with murine rTNF-alpha for 24 h caused a dose-dependent increase in conversion of these cells to lin(-)c-kit(+)Sca-1(+) cells. Sca-1 mRNA expression by the cultured cells was also up-regulated following TNF-alpha stimulation. Acute alcohol intoxication inhibited the increase in the number of lin(-)c-kit(+)Sca-1(+) cells in the bone marrow after E. coli infection. Alcohol impeded the increase in BrdU incorporation into marrow lin(-)c-kit(+)Sca-1(+) cells in response to bacteremia. Alcohol also suppressed the plasma TNF-alpha response to bacteremia and inhibited TNF-alpha-induced phenotypic inversion of lin(-)c-kit(+)Sca-1(+)Sca-1(-) cells in vitro. These data show that alcohol inhibits the hematopoietic precursor cell response to bacteremia,which may serve as one mechanism underlying the impaired host defense in alcohol abusers with severe bacterial infections.
View Publication
N'jai AU et al. (APR 2011)
Molecular pharmacology 79 4 724--34
Acute disruption of bone marrow hematopoiesis by benzo(a)pyrene is selectively reversed by aryl hydrocarbon receptor-mediated processes.
Bone marrow (BM) hematopoietic cells are selectively sensitive to polycyclic aromatic hydrocarbons (PAH) in vivo. 7,12-Dimethylbenz(a)anthracene (DMBA),but not benzo(a)pyrene (BP),depletes BM hematopoietic cells in C57BL/6 mice. This difference is due to a BP-selective aryl hydrocarbon receptor (AhR)-mediated recovery. Colony-forming unit assays show suppression of lymphoid progenitors by each PAH within 6 h but a subsequent recovery,exclusively after BP treatment. Suppression of myeloid progenitors (6 h) occurs only for DMBA. Each progenitor responded equally to DMBA and BP in congenic mice expressing the PAH-resistant AhR (AhR(d)). AhR,therefore,mediates this BP recovery in each progenitor type. These PAH suppressions depend on Cyp1b1-mediated metabolism. Paradoxically,few genes responded to DMBA,whereas 12 times more responded to BP. Progenitor suppression by DMBA,therefore,occurs with minimal effects on the general BM population. Standard AhR-mediated stimulations (Cyp1a1,Cyp1b1,Ahrr) were similar for each PAH and for the specific agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin but were absent in AhR(d) mice. A group of 12 such AhR responses was sustained from 6 to 24 h. A second,larger set of BP responses (chemokines,cytokines,cyclooxygenase 2) differed in two respects; DMBA responses were low and BP responses declined extensively from 6 to 24 h. A third cluster exhibited BP-induced increases in protective genes (Nqo1,GST-mu) that appeared only after 12 h. Conversion of BP to quinones contributes oxidative signaling not seen with DMBA. We propose that genes in this second cluster,which share oxidative signaling and AhR activation,provide the AhR-dependent protection of hematopoietic progenitors seen for BP.
View Publication
D. M. Shaw et al. (jan 2020)
European journal of applied physiology 120 1 191--202
Acute hyperketonaemia alters T-cell-related cytokine gene expression within stimulated peripheral blood mononuclear cells following prolonged exercise.
PURPOSE We investigated the effect of the racemic $\beta$-hydroxybutyrate precursor,R,S-1,3-butanediol (BD),on T-cell-related cytokine gene expression within stimulated peripheral blood mononuclear cells (PBMC) following prolonged,strenuous exercise. METHODS A repeated-measures,randomised,crossover study was conducted in nine healthy,trained male cyclists (age,26.7 ± 5.2 years; VO2peak,63.9 ± 2.5 mL kg-1 min-1). Participants ingested 0.35 g kg-1 of BD or placebo 30 min before and 60 min during 85 min of steady-state (SS) exercise,which preceded a {\~{}} 30 min time-trial (TT) (7 kJ kg-1). Blood samples were collected at pre-supplement,pre-exercise,post-SS,post-TT and 1-h post-TT. Whole blood cultures were stimulated with Staphylococcal enterotoxin B (SEB) for 24 h to determine T-cell-related interleukin (IL)-4,IL-10 and interferon (IFN)-$\gamma$ mRNA expression within isolated PBMCs in vitro. RESULTS Serum cortisol,total circulating leukocyte and lymphocyte,and T-cell subset concentrations were similar between trials during exercise and recovery (all p {\textgreater} 0.05). BD ingestion increased T-cell-related IFN-$\gamma$ mRNA expression compared with placebo throughout exercise and recovery (p = 0.011); however,IL-4 and IL-10 mRNA expression and the IFN-$\gamma$/IL-4 mRNA expression ratio were unaltered (all p {\textgreater} 0.05). CONCLUSION Acute hyperketonaemia appears to transiently amplify the initiation of the pro-inflammatory T-cell-related IFN-$\gamma$ response to an immune challenge in vitro during and following prolonged,strenuous exercise; suggesting enhanced type-1 T-cell immunity at the gene level.
View Publication
T. C. Jackson et al. (MAY 2018)
Scientific reports 8 1 7158
Acute Physiology and Neurologic Outcomes after Brain Injury in SCOP/PHLPP1 KO Mice.
Suprachiasmatic nucleus circadian oscillatory protein (SCOP) (a.k.a. PHLPP1) regulates long-term memory consolidation in the brain. Using a mouse model of controlled cortical impact (CCI) we tested if (1) brain tissue levels of SCOP/PHLPP1 increase after a traumatic brain injury (TBI),and (2) if SCOP/PHLPP1 gene knockout (KO) mice have improved (or worse) neurologic outcomes. Blood chemistry (pH,pCO2,pO2,pSO2,base excess,sodium bicarbonate,and osmolarity) and arterial pressure (MAP) differed in isoflurane anesthetized WT vs. KOs at baseline and up to 1 h post-injury. CCI injury increased cortical/hippocampal SCOP/PHLPP1 levels in WTs 7d and 14d post-injury. Injured KOs had higher brain tissue levels of phosphorylated AKT (pAKT) in cortex (14d post-injury),and higher levels of phosphorylated MEK (pMEK) in hippocampus (7d and 14d post-injury) and in cortex (7d post-injury). Consistent with an important role of SCOP/PHLPP1 on memory function,injured-KOs had near normal performance on the probe trial of the Morris water maze,whereas injured-WTs were impaired. CA1/CA3 hippocampal survival was lower in KOs vs. WTs 24 h post-injury but equivalent by 7d. No difference in 21d cortical lesion volume was detected. SCOP/PHLPP1 overexpression in cultured rat cortical neurons had no effect on 24 h cell death after a mechanical stretch-injury.
View Publication
Gruber M et al. (FEB 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 7 2301--6
Acute postnatal ablation of Hif-2alpha results in anemia.
Adaptive transcriptional responses to oxygen deprivation (hypoxia) are mediated by the hypoxia-inducible factors (HIFs),heterodimeric transcription factors composed of two basic helix-loop-helix-PAS family proteins. The transcriptional activity of HIF is determined by the hypoxic stabilization of the HIF-alpha proteins. HIF-1alpha and HIF-2alpha exhibit high sequence homology but have different mRNA expression patterns; HIF-1alpha is expressed ubiquitously whereas HIF-2alpha expression is more restricted to certain tissues,e.g.,the endothelium,lung,brain,and neural crest derivatives. Germ-line deletion of either HIF subunit is embryonic lethal with unique features suggesting important roles for both HIF-alpha isoforms. Global deletion of Hif-2alpha results in distinct phenotypes depending on the mouse strain used for the mutation,clearly demonstrating an important role for HIF-2alpha in mouse development. The function of HIF-2alpha in adult life,however,remains incompletely understood. In this study,we describe the generation of a conditional murine Hif-2alpha allele and the effect of its acute postnatal ablation. Under very stringent conditions,we ablate Hif-2alpha after birth and compare the effect of acute global deletion of Hif-2alpha and Hif-1alpha. Our results demonstrate that HIF-2alpha plays a critical role in adult erythropoiesis,with acute deletion leading to anemia. Furthermore,although HIF-1alpha was first purified and cloned based on its affinity for the human erythropoietin (EPO) 3' enhancer hypoxia response element (HRE) and regulates Epo expression during mouse embryogenesis,HIF-2alpha is the critical alpha isoform regulating Epo under physiologic and stress conditions in adults.
View Publication
Sauer AV et al. (OCT 2009)
Blood 114 15 3216--26
ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency.
Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations,including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin axis,causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro,osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore,the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy,bone marrow transplantation,or gene therapy resulted in full recovery of the altered bone parameters. Remarkably,untreated ADA-severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children's growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling.
View Publication