技术资料
-
(May 2024) Clinical Epigenetics 16 6Hyper-physiologic mechanical cues, as an osteoarthritis disease-relevant environmental perturbation, cause a critical shift in set points of methylation at transcriptionally active CpG sites in neo-cartilage organoids
BackgroundOsteoarthritis (OA) is a complex,age-related multifactorial degenerative disease of diarthrodial joints marked by impaired mobility,joint stiffness,pain,and a significant decrease in quality of life. Among other risk factors,such as genetics and age,hyper-physiological mechanical cues are known to play a critical role in the onset and progression of the disease (Guilak in Best Pract Res Clin Rheumatol 25:815–823,2011). It has been shown that post-mitotic cells,such as articular chondrocytes,heavily rely on methylation at CpG sites to adapt to environmental cues and maintain phenotypic plasticity. However,these long-lasting adaptations may eventually have a negative impact on cellular performance. We hypothesize that hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic markers in articular chondrocytes,resulting in a loss of the tightly regulated balance of gene expression that leads to a dysregulated state characteristic of the OA disease state.ResultsWe showed that hyper-physiological loading evokes consistent changes in CpGs associated with expression changes (ML-tCpGs) in ITGA5,CAV1,and CD44,among other genes,which together act in pathways such as anatomical structure morphogenesis (GO:0009653) and response to wound healing (GO:0042060). Moreover,by comparing the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology (OA-tCpGs),we observed a modest but particular interconnected overlap with notable genes such as CD44 and ITGA5. These genes could indeed represent lasting detrimental changes to the phenotypic state of chondrocytes due to mechanical perturbations that occurred earlier in life. The latter is further suggested by the association between methylation levels of ML-tCpGs mapped to CD44 and OA severity.ConclusionOur findings confirm that hyper-physiological mechanical cues evoke changes to the methylome-wide landscape of chondrocytes,concomitant with detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1,ITGA5,and CD44 are subject to such changes and are central and overlapping with OA-tCpGs of primary chondrocytes,we propose that accumulation of hyper-physiological mechanical cues can evoke long-lasting,detrimental changes in set points of gene expression that influence the phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this hypothesis.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13148-024-01676-0. View Publication -
(Nov 2024) iScience 27 12HucMSCs can alleviate abnormal vasculogenesis induced by high glucose through the MAPK signaling pathway
SummaryVascular complications caused by diabetes mellitus contribute a major threat to increased disability and mortality of diabetic patients,which are characterized by damaged endothelial cells and angiogenesis. Human umbilical cord-derived mesenchymal stem cells (hucMSCs) have been demonstrated to alleviate endothelial cell damage and improve angiogenesis. However,these investigations overlooked the pivotal role of vasculogenesis. In this study,we utilized blood vessel organoids (BVOs) to investigate the impact of high glucose on vasculogenesis and subsequent angiogenesis. We found that BVOs in the vascular lineage induction stage were more sensitive to high glucose and more susceptible to affect endothelial cell differentiation and function. Moreover,hucMSCs can alleviate the high glucose-induced inhibition of endothelial cell differentiation and dysfunction through MAPK signaling pathway downregulation,with the MAPK activator dimethyl fumarate further illustrating the results. Thereby,we demonstrated that high glucose can lead to abnormal vasculogenesis and impact subsequent angiogenesis,and hucMSCs can alleviate this effect. Graphical abstract Highlights•The induction process of BVOs can be divided into vasculogenesis and angiogenesis•The formation of VI-BVOs is more vulnerable to damage from high glucose than MI-BVOs•HucMSCs can improve vasculogenesis through the MAPK signaling pathway Pathophysiology; Stem cells research; Vascular remodeling View Publication -
(Mar 2024) Nature Communications 15A conserved NR5A1-responsive enhancer regulates
The Y-linked SRY gene initiates mammalian testis-determination. However,how the expression of SRY is regulated remains elusive. Here,we demonstrate that a conserved steroidogenic factor-1 (SF-1)/NR5A1 binding enhancer is required for appropriate SRY expression to initiate testis-determination in humans. Comparative sequence analysis of SRY 5’ regions in mammals identified an evolutionary conserved SF-1/NR5A1-binding motif within a 250 bp region of open chromatin located 5 kilobases upstream of the SRY transcription start site. Genomic analysis of 46,XY individuals with disrupted testis-determination,including a large multigenerational family,identified unique single-base substitutions of highly conserved residues within the SF-1/NR5A1-binding element. In silico modelling and in vitro assays demonstrate the enhancer properties of the NR5A1 motif. Deletion of this hemizygous element by genome-editing,in a novel in vitro cellular model recapitulating human Sertoli cell formation,resulted in a significant reduction in expression of SRY. Therefore,human NR5A1 acts as a regulatory switch between testis and ovary development by upregulating SRY expression,a role that may predate the eutherian radiation. We show that disruption of an enhancer can phenocopy variants in the coding regions of SRY that cause human testis dysgenesis. Since disease causing variants in enhancers are currently rare,the regulation of gene expression in testis-determination offers a paradigm to define enhancer activity in a key developmental process. Disease-causing variants define a conserved and unique NR5A1 responsive enhancer for SRY expression to initiate testis-determination in humans. Modelling regulatory variants causing sex-reversal provides a tool to understand global enhancer activity. View Publication -
(Apr 2024) Frontiers in Cell and Developmental Biology 12 5Forskolin induces FXR expression and enhances maturation of iPSC-derived hepatocyte-like cells
The generation of iPSC-derived hepatocyte-like cells (HLCs) is a powerful tool for studying liver diseases,their therapy as well as drug development. iPSC-derived disease models benefit from their diverse origin of patients,enabling the study of disease-associated mutations and,when considering more than one iPSC line to reflect a more diverse genetic background compared to immortalized cell lines. Unfortunately,the use of iPSC-derived HLCs is limited due to their lack of maturity and a rather fetal phenotype. Commercial kits and complicated 3D-protocols are cost- and time-intensive and hardly useable for smaller working groups. In this study,we optimized our previously published protocol by fine-tuning the initial cell number,exchanging antibiotics and basal medium composition and introducing the small molecule forskolin during the HLC maturation step. We thereby contribute to the liver research field by providing a simple,cost- and time-effective 2D differentiation protocol. We generate functional HLCs with significantly increased HLC hallmark gene (ALB,HNF4?,and CYP3A4) and protein (ALB) expression,as well as significantly elevated inducible CYP3A4 activity. Graphical Abstract View Publication -
(Jan 2025) Cells 14 2Derivation and Characterization of Isogenic OPA1 Mutant and Control Human Pluripotent Stem Cell Lines
Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the OPA1 gene,which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion. Within the mitochondrion,proteolytically processed OPA1 proteins form complexes to maintain membrane integrity and the respiratory chain complexity. Although OPA1 is broadly expressed,human OPA1 mutations predominantly affect retinal ganglion cells (RGCs) that are responsible for transmitting visual information from the retina to the brain. Due to the scarcity of human RGCs,DOA has not been studied in depth using the disease affected neurons. To enable studies of DOA using stem-cell-derived human RGCs,we performed CRISPR-Cas9 gene editing to generate OPA1 mutant pluripotent stem cell (PSC) lines with corresponding isogenic controls. CRISPR-Cas9 gene editing yielded both OPA1 homozygous and heterozygous mutant ESC lines from a parental control ESC line. In addition,CRISPR-mediated homology-directed repair (HDR) successfully corrected the OPA1 mutation in a DOA patient’s iPSCs. In comparison to the isogenic controls,the heterozygous mutant PSCs expressed the same OPA1 protein isoforms but at reduced levels; whereas the homozygous mutant PSCs showed a loss of OPA1 protein and altered mitochondrial morphology. Furthermore,OPA1 mutant PSCs exhibited reduced rates of oxygen consumption and ATP production associated with mitochondria. These isogenic PSC lines will be valuable tools for establishing OPA1-DOA disease models in vitro and developing treatments for mitochondrial deficiency associated neurodegeneration. View Publication -
(Dec 2024) Nature Communications 15Reliability of high-quantity human brain organoids for modeling microcephaly, glioma invasion and drug screening
Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances,however,are morphological and cellular heterogeneity,inter-organoid size differences,cellular stress,and poor reproducibility. Here,we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines. These High Quantity brain organoids (Hi-Q brain organoids) exhibit reproducible cytoarchitecture,cell diversity,and functionality,are free from ectopically active cellular stress pathways,and allow cryopreservation and re-culturing. Patient-derived Hi-Q brain organoids recapitulate distinct forms of developmental defects: primary microcephaly due to a mutation in CDK5RAP2 and progeria-associated defects of Cockayne syndrome. Hi-Q brain organoids displayed a reproducible invasion pattern for a given patient-derived glioma cell line. This enabled a medium-throughput drug screen to identify Selumetinib and Fulvestrant,as inhibitors of glioma invasion in vivo. Thus,the Hi-Q approach can easily be adapted to reliably harness brain organoids’ application for personalized neurogenetic disease modeling and drug discovery. Human brain organoids are plagued by heterogeneity and poor reproducibility,critical parameters for reliable disease modeling and drug testing. Here,the authors report on Hi-Q organoids which solve these limitations and can be cryopreserved in large quantities. View Publication -
(Mar 2024) Nature Neuroscience 27 4Liprin-? proteins are master regulators of human presynapse assembly
The formation of mammalian synapses entails the precise alignment of presynaptic release sites with postsynaptic receptors but how nascent cell–cell contacts translate into assembly of presynaptic specializations remains unclear. Guided by pioneering work in invertebrates,we hypothesized that in mammalian synapses,liprin-? proteins directly link trans-synaptic initial contacts to downstream steps. Here we show that,in human neurons lacking all four liprin-? isoforms,nascent synaptic contacts are formed but recruitment of active zone components and accumulation of synaptic vesicles is blocked,resulting in ‘empty’ boutons and loss of synaptic transmission. Interactions with presynaptic cell adhesion molecules of either the LAR-RPTP family or neurexins via CASK are required to localize liprin-? to nascent synaptic sites. Liprin-? subsequently recruits presynaptic components via a direct interaction with ELKS proteins. Thus,assembly of human presynaptic terminals is governed by a hierarchical sequence of events in which the recruitment of liprin-? proteins by presynaptic cell adhesion molecules is a critical initial step. This paper identifies the evolutionarily conserved liprin-? protein family as key mediators of presynaptic assembly in human neurons. Their recruitment to sites formed by contacting neurons is the critical initial step that triggers presynaptic differentiation. View Publication -
(Dec 2024) Scientific Reports 14 4miRNA changes associated with differentiation of human embryonic stem cells into human retinal ganglion cells
miRNA,short non-coding RNA,are rapidly emerging as important regulators in cell homeostasis,as well as potential players in cellular degeneration. The latter has led to interest in them as both biomarkers and as potential therapeutics. Retinal ganglion cells (RGC),whose axons connect the eye to the brain,are central nervous system cells of great interest,yet their study is largely restricted to animals due to the difficulty in obtaining healthy human RGC. Using a CRISPR/Cas9-based reporter embryonic stem cell line,human RGC were generated and their miRNA profile characterized using NanoString miRNA assays. We identified a variety of retinal specific miRNA upregulated in ESC-derived RGC,with half of the most abundant miRNA also detectable in purified rat RGC. Several miRNA were however identified to be unique to RGC from human. The findings show which miRNA are abundant in RGC and the limited congruence with animal derived RGC. These data could be used to understand miRNA’s role in RGC function,as well as potential biomarkers or therapies in retinal diseases involving RGC degeneration. View Publication -
(Feb 2024) STAR Protocols 5 1Protocol for neurogenin-2-mediated induction of human stem cell-derived neural progenitor cells
SummaryHuman pluripotent stem cell-derived neural progenitor cells (NPCs) are an essential tool for the study of brain development and developmental disorders such as autism. Here,we present a protocol to generate NPCs rapidly and reproducibly from human stem cells using dual-SMAD inhibition coupled with a brief pulse of mouse neurogenin-2 (Ngn2) overexpression. We detail the 48-h induction scheme deployed to produce these cells—termed stem cell-derived Ngn2-accelerated progenitor cells—followed by steps for expansion,purification,banking,and quality assessment.For complete details on the use and execution of this protocol,please refer to Wells et al.1 Graphical abstract Highlights•Brief pulse of Ngn2 induces neural progenitor cells from human stem cells•Guidance on expanding,freezing,and thawing SNaP cells for future use•Immunostaining-based assays assess cell identity and differentiation potential Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Human pluripotent stem cell-derived neural progenitor cells (NPCs) are an essential tool for the study of brain development and developmental disorders such as autism. Here,we present a protocol to generate NPCs rapidly and reproducibly from human stem cells using dual-SMAD inhibition coupled with a brief pulse of mouse neurogenin-2 (Ngn2) overexpression. We detail the 48-h induction scheme deployed to produce these cells—termed stem cell-derived Ngn2-accelerated progenitor cells—followed by steps for expansion,purification,banking,and quality assessment. View Publication -
(May 2025) Nature Communications 16Robust prediction of synthetic gRNA activity and cryptic DNA repair by disentangling cellular CRISPR cleavage outcomes
The ability to robustly predict guide RNA (gRNA) activity is a long-standing goal for CRISPR applications,as it would reduce the need to pre-screen gRNAs. Quantification of formation of short insertions and deletions (indels) after DNA cleavage by transcribed gRNAs has been typically used to measure and predict gRNA activity. We evaluate the effect of chemically synthesized Cas9 gRNAs on different cellular DNA cleavage outcomes and find that the activity of different gRNAs is largely similar and often underestimated when only indels are scored. We provide a simple linear model that reliably predicts synthetic gRNA activity across cell lines,robustly identifies inefficient gRNAs across different published datasets,and is easily accessible via online genome browser tracks. In addition,we develop a homology-directed repair efficiency prediction tool and show that unintended large-scale repair events are common for Cas9 but not for Cas12a,which may be relevant for safety in gene therapy applications. Reliable prediction of guide RNA (gRNA) activity is key for efficient CRISPR gene editing. Here,the authors show that efficiency of gRNAs is often underestimated when only indels are scored and introduce tools for predicting activity of chemically synthesized gRNAs and HDR efficiency. View Publication -
(Jul 2024) iScience 27 8Substrate stiffness alters layer architecture and biophysics of human induced pluripotent stem cells to modulate their differentiation potential
SummaryLineage-specific differentiation of human induced pluripotent stem cells (hiPSCs) relies on complex interactions between biochemical and physical cues. Here we investigated the ability of hiPSCs to undergo lineage commitment in response to inductive signals and assessed how this competence is modulated by substrate stiffness. We showed that Activin A-induced hiPSC differentiation into mesendoderm and its derivative,definitive endoderm,is enhanced on gel-based substrates softer than glass. This correlated with changes in tight junction formation and extensive cytoskeletal remodeling. Further,live imaging and biophysical studies suggested changes in cell motility and interfacial contacts underlie hiPSC layer reshaping on soft substrates. Finally,we repurposed an ultra-soft silicone gel,which may provide a suitable substrate for culturing hiPSCs at physiological stiffnesses. Our results provide mechanistic insight into how epithelial mechanics dictate the hiPSC response to chemical signals and provide a tool for their efficient differentiation in emerging stem cell therapies. Graphical abstract Highlights•Tuning of substrate stiffness can enhance mesendoderm/endoderm hiPSC differentiation•Altered tight junction formation drives increased differentiation on soft substrates•Changes in cell motility and interfacial contacts underlie hiPSC layer remodeling Mechanobiology; Stem cells research; Biophysics View Publication -
(May 2025) Molecular Neurodegeneration 20 2213–2233Alzheimer’s disease protective allele of Clusterin modulates neuronal excitability through lipid-droplet-mediated neuron-glia communication
BackgroundGenome-wide association studies (GWAS) of Alzheimer’s disease (AD) have identified a plethora of risk loci. However,the disease variants/genes and the underlying mechanisms have not been extensively studied.MethodsBulk ATAC-seq was performed in induced pluripotent stem cells (iPSCs) differentiated various brain cell types to identify allele-specific open chromatin (ASoC) SNPs. CRISPR-Cas9 editing generated isogenic pairs,which were then differentiated into glutamatergic neurons (iGlut). Transcriptomic analysis and functional studies of iGlut co-cultured with mouse astrocytes assessed neuronal excitability and lipid droplet formation.ResultsWe identified a putative causal SNP of CLU that impacted neuronal chromatin accessibility to transcription-factor(s),with the AD protective allele upregulating neuronal CLU and promoting neuron excitability. And,neuronal CLU facilitated neuron-to-glia lipid transfer and astrocytic lipid droplet formation coupled with reactive oxygen species (ROS) accumulation. These changes caused astrocytes to uptake less glutamate thereby altering neuron excitability.ConclusionsFor a strong AD-associated locus near Clusterin (CLU),we connected an AD protective allele to a role of neuronal CLU in promoting neuron excitability through lipid-mediated neuron-glia communication. Our study provides insights into how CLU confers resilience to AD through neuron-glia interactions.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13024-025-00840-1. View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号