Biomass-derived carbon dots as fluorescent quantum probes to visualize and modulate inflammation
Quantum dots,which won the Nobel Prize in Chemistry,have recently gained significant attention in precision medicine due to their unique properties,such as size-tunable emission,high photostability,efficient light absorption,and vibrant luminescence. Consequently,there is a growing demand to identify new types of quantum dots from various sources and explore their potential applications as stimuli-responsive biosensors,biomolecular imaging probes,and targeted drug delivery agents. Biomass-waste-derived carbon quantum dots (CQDs) are an attractive alternative to conventional QDs,which often require expensive and toxic precursors,as they offer several merits in eco-friendly synthesis,preparation from renewable sources,and cost-effective production. In this study,we evaluated three CQDs derived from biomass waste for their potential application as non-toxic bioimaging agents in various cell lines,including human dermal fibroblasts,HeLa,cardiomyocytes,induced pluripotent stem cells,and an in-vivo medaka fish (Oryzias latipes) model. Confocal microscopic studies revealed that CQDs could assist in visualizing inflammatory processes in the cells,as they were taken up more by cells treated with tumor necrosis factor-? than untreated cells. In addition,our quantitative real-time PCR gene expression analysis has revealed that citric acid-based CQDs can potentially reduce inflammatory markers such as Interleukin-6. Our studies suggest that CQDs have potential as theragnostic agents,which can simultaneously identify and modulate inflammatory markers and may lead to targeted therapy for immune system-associated diseases.
View Publication
Diaz MF et al. (MAY 2015)
The Journal of experimental medicine 212 5 665--80
Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis.
Blood flow promotes emergence of definitive hematopoietic stem cells (HSCs) in the developing embryo,yet the signals generated by hemodynamic forces that influence hematopoietic potential remain poorly defined. Here we show that fluid shear stress endows long-term multilineage engraftment potential upon early hematopoietic tissues at embryonic day 9.5,an embryonic stage not previously described to harbor HSCs. Effects on hematopoiesis are mediated in part by a cascade downstream of wall shear stress that involves calcium efflux and stimulation of the prostaglandin E2 (PGE2)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling axis. Blockade of the PGE2-cAMP-PKA pathway in the aorta-gonad-mesonephros (AGM) abolished enhancement in hematopoietic activity. Furthermore,Ncx1 heartbeat mutants,as well as static cultures of AGM,exhibit lower levels of expression of prostaglandin synthases and reduced phosphorylation of the cAMP response element-binding protein (CREB). Similar to flow-exposed cultures,transient treatment of AGM with the synthetic analogue 16,16-dimethyl-PGE2 stimulates more robust engraftment of adult recipients and greater lymphoid reconstitution. These data provide one mechanism by which biomechanical forces induced by blood flow modulate hematopoietic potential.
View Publication
L. Yang et al. (Aug 2025)
International Journal of Nanomedicine 20 1
Biomimetic Aggregation-Induced Emission Luminogens Mediated Effective Phototherapy and Immune Checkpoint Blockade for the Synergistic Treatment of Lung Cancer
BackgroundLung cancer has become one of the most fatal cancers at present. Traditional treatments showed limited therapeutic effects on lung cancer. The phototherapy has emerged as a powerful approach for lung cancer treatment. Aggregation-induced emission luminogens (AIEgens) exhibit excellent optical performance such as strong fluorescence,enhanced reactive oxygen species (ROS) generation,and effective thermal effect after aggregation,which show great potential in phototherapy. However,the disadvantages including hydrophobicity,low specificity,and short circulation lifetime limited their efficacy on cancer therapy.MethodsWe developed a biomimetic AIEgens constructed using CD8+ T cells membrane to camouflage the AIEgen C41H37N2O3S2 (named BITT) nanoparticles (termed TB). The prepared TB improved the tumor accumulation of AIEgen by PD-1/PD-L1 recognition on the CD8+ T and LLC cell membranes,respectively.ResultsThe prepared TB showed improved binding efficiency,photothermal effects,and ROS generation ability to kill the lung cancer cells. TB also showed improved circulation lifetime and excellent tumor targeting ability,leading to effective phototherapy and immunotherapy in vivo based on BITT and the CD8+ T cell-derived membranes. Based on the AIE and immune checkpoint blockade (ICB) strategies,TB enhanced the antitumor activities of lung cancer by phototherapy and immunotherapy.ConclusionThe present work developed a type of biomimetic AIEgens,which overcame the inherent limitations of conventional AIEgens and leveraged immune recognition for targeted tumor accumulation. Furthermore,the integration of AIE-driven phototherapy with immune checkpoint blockade demonstrated potent synergistic antitumor efficacy,establishing a promising combinatorial strategy against aggressive lung malignancies.
View Publication
Liu H and Roy K ( )
Tissue engineering 11 1-2 319--30
Stem cell-based tissue engineering is a promising technology in the effort to create functional tissues of choice. To establish an efficient approach for generating hematopoietic cell lineages directly from embryonic stem (ES) cells and to study the effects of three-dimensional (3D) biomaterials on ES cell differentiation,we cultured mouse ES cells on 3D,highly porous,biomimetic scaffolds. Cell differentiation was evaluated by microscopy and flow cytometry analysis with a variety of hematopoiesis- specific markers. Our data indicate that ES cells differentiated on porous 3D scaffold structures developed embryoid bodies (EBs) similar to those in traditional two-dimensional (2D) cultures; however,unlike 2D differentiation,these EBs integrated with the scaffold and appeared embedded in a network of extracellular matrix. Most significantly,the efficiency of hematopoietic precursor cell (HPC) generation on 3D,as indicated by the expression of various HPC-specific surface markers (CD34,Sca-1,Flk-1,and c-Kit) and colony-forming cell (CFC) assays,was reproducibly increased (about 2-fold) over their 2D counterparts. Comparison of static and dynamic 3D cultures demonstrated that spinner flask technology also contributed to the higher hematopoietic differentiation efficiency of ES cells seeded on scaffolds. Continued differentiation of 3D-derived HPCs into the myeloid lineage demonstrated increased efficiency (2-fold) of generating myeloid compared with differentiation from 2D-derived HPCs.
View Publication
Biophysical regulation of epigenetic state and cell reprogramming
Biochemical factors can help reprogram somatic cells into pluripotent stem cells,yet the role of biophysical factors during reprogramming is unknown. Here,we show that biophysical cues,in the form of parallel microgrooves on the surface of cell-adhesive substrates,can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells' epigenetic state. Specifically,decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)—a subunit of H3 methyltranferase—by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves,suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.
View Publication
(Feb 2025)
Nature Communications 16
Bioprinting of bespoke islet-specific niches to promote maturation of stem cell-derived islets
Pancreatic islets are densely packed cellular aggregates containing various hormonal cell types essential for blood glucose regulation. Interactions among these cells markedly affect the glucoregulatory functions of islets along with the surrounding niche and pancreatic tissue-specific geometrical organization. However,stem cell (SC)-derived islets generated in vitro often lack the three-dimensional extracellular microenvironment and peri-vasculature,which leads to the immaturity of SC-derived islets,reducing their ability to detect glucose fluctuations and insulin release. Here,we bioengineer the in vivo-like pancreatic niches by optimizing the combination of pancreatic tissue-specific extracellular matrix and basement membrane proteins and utilizing bioprinting-based geometrical guidance to recreate the spatial pattern of islet peripheries. The bioprinted islet-specific niche promotes coordinated interactions between islets and vasculature,supporting structural and functional features resembling native islets. Our strategy not only improves SC-derived islet functionality but also offers significant potential for advancing research on islet development,maturation,and diabetic disease modeling,with future implications for translational applications. The glucoregulatory functions of pancreatic islets are affected by their surrounding niche and spatial organization. Here,bioengineered stem-cell derived islet niches use bioprinting-based geometrical guidance to promote islet maturation for improved functionality and diabetes research.
View Publication
Chen X et al. (SEP 2006)
Stem cells (Dayton,Ohio) 24 9 2052--9
Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells.
Supplementation of mesenchymal stem cells (MSCs) during hematopoietic stem cell (HSC) transplantation alleviates complications such as graft-versus-host disease,leading to a speedy recovery of hematopoiesis. To meet this clinical demand,a fast MSC expansion method is required. In the present study,we examined the feasibility of using a rotary bioreactor system to expand MSCs from isolated bone marrow mononuclear cells. The cells were cultured in a rotary bioreactor with Myelocult medium containing a combination of supplementary factors,including stem cell factor and interleukin-3 and -6. After 8 days of culture,total cell numbers,Stro-1(+)CD44(+)CD34(-) MSCs,and CD34(+)CD44(+)Stro-1(-) HSCs were increased 9-,29-,and 8-fold,respectively. Colony-forming efficiency-fibroblast per day of the bioreactor-treated cells was 1.44-fold higher than that of the cells without bioreactor treatment. The bioreactor-expanded MSCs showed expression of primitive MSC markers endoglin (SH2) and vimentin,whereas markers associated with lineage differentiation,including osteocalcin (osteogenesis),type II collagen (chondrogenesis),and C/EBP-alpha (CCAAT/enhancer-binding protein-alpha) (adipogenesis),were not detected. Upon induction,the bioreactor-expanded MSCs were able to differentiate into osteoblasts,chondrocytes,and adipocytes. We conclude that the rotary bioreactor with the modified Myelocult medium reported in this study may be used to rapidly expand MSCs.
View Publication
Vara J et al. (DEC 1985)
Biochemistry 24 27 8074--81
Biosynthesis of puromycin by Streptomyces alboniger: characterization of puromycin N-acetyltransferase.
Puromycin N-acetyltransferase from Streptomyces alboniger inactivates puromycin by acetylating the amino position of its tyrosinyl moiety. This enzyme has been partially purified by column chromatography through DEAE-cellulose and Affigel Blue and characterized. It has an Mr of 23 000,as determined by gel filtration. In addition to puromycin,the enzyme N-acetylates O-demethylpuromycin,a toxic precursor of the antibiotic,and chryscandin,a puromycin analogue antibiotic. The Km values for puromycin and O-demethylpuromycin are 1.7 and 4.6 microM,respectively. The O-demethylpuromycin O-methyltransferase from S. alboniger,which apparently catalyzes the last step in the biosynthesis of puromycin [Rao,M. M.,Rebello,P. F.,& Pogell,B. M. (1969) J. Biol. Chem. 244,112-118],also O-methylates N-acetyl-O-demethylpuromycin. The Km values of the methylating enzyme for O-demethylpuromycin and N-acetyl-O-demethylpuromycin are 260 and 2.3 microM,respectively. These findings suggest that O-demethylpuromycin,if present in S. alboniger,would be N-acetylated and then O-methylated to be converted into N-acetylpuromycin. It might even be possible that N-acetylation of the puromycin backbone takes place at an earlier precursor.
View Publication
Kim Y et al. (DEC 2016)
Experimental neurobiology 25 6 296--306
Bipolar Disorder Associated microRNA, miR-1908-5p, Regulates the Expression of Genes Functioning in Neuronal Glutamatergic Synapses.
Bipolar disorder (BD),characterized by recurrent mood swings between depression and mania,is a highly heritable and devastating mental illness with poorly defined pathophysiology. Recent genome-wide molecular genetic studies have identified several protein-coding genes and microRNAs (miRNAs) significantly associated with BD. Notably,some of the proteins expressed from BD-associated genes function in neuronal synapses,suggesting that abnormalities in synaptic function could be one of the key pathogenic mechanisms of BD. In contrast,however,the role of BD-associated miRNAs in disease pathogenesis remains largely unknown,mainly because of a lack of understanding about their target mRNAs and pathways in neurons. To address this problem,in this study,we focused on a recently identified BD-associated but uncharacterized miRNA,miR-1908-5p. We identified and validated its novel target genes including DLGAP4,GRIN1,STX1A,CLSTN1 and GRM4,which all function in neuronal glutamatergic synapses. Moreover,bioinformatic analyses of human brain expression profiles revealed that the expression levels of miR-1908-5p and its synaptic target genes show an inverse-correlation in many brain regions. In our preliminary experiments,the expression of miR-1908-5p was increased after chronic treatment with valproate but not lithium in control human neural progenitor cells. In contrast,it was decreased by valproate in neural progenitor cells derived from dermal fibroblasts of a BD subject. Together,our results provide new insights into the potential role of miR-1908-5p in the pathogenesis of BD and also propose a hypothesis that neuronal synapses could be a key converging pathway of some BD-associated protein-coding genes and miRNAs.
View Publication
Montecino-Rodriguez E et al. (JAN 2001)
Nature immunology 2 1 83--8
Bipotential B-macrophage progenitors are present in adult bone marrow.
According to the current model of adult hematopoiesis,differentiation of pluripotential hematopoietic stem cells into common myeloid- and lymphoid-committed progenitors establishes an early separation between the myeloid and lymphoid lineages. This report describes a rare and previously unidentified CD45R-CD19+ B cell progenitor population in postnatal bone marrow that can also generate macrophages. In addition to the definition of this B-lineage intermediate,the data indicate that a developmental relationship between the B and macrophage lineages is retained during postnatal hematopoiesis.
View Publication
Kuma Y et al. (MAY 2005)
The Journal of biological chemistry 280 20 19472--9
BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo.
The compound BIRB796 inhibits the stress-activated protein kinases p38alpha and p38beta and is undergoing clinical trials for the treatment of inflammatory diseases. Here we report that BIRB796 also inhibits the activity and the activation of SAPK3/p38gamma. This occurs at higher concentrations of BIRB796 than those that inhibit p38alpha and p38beta and at lower concentrations than those that inhibit the activation of JNK isoforms. We also show that at these concentrations,BIRB796 blocks the stress-induced phosphorylation of the scaffold protein SAP97,further establishing that this is a physiological substrate of SAPK3/p38gamma. Our results demonstrate that BIRB796,in combination with SB203580,a compound that inhibits p38alpha and p38beta,but not the other p38 isoforms,can be used to identify physiological substrates of SAPK3/p38gamma as well as those of p38alpha and p38beta.
View Publication
Brandl M et al. (AUG 1999)
Experimental hematology 27 8 1264--70
Bispecific antibody fragments with CD20 X CD28 specificity allow effective autologous and allogeneic T-cell activation against malignant cells in peripheral blood and bone marrow cultures from patients with B-cell lineage leukemia and lymphoma.
Bispecific antibodies directed against tumor-associated target antigens and to surface receptors mediating T-cell activation,such as the TCR/CD3 complex and the costimulatory receptor CD28,are capable of mediating T-cell activation resulting in tumor cell killing. In this study,we used the B-cell-associated antigens CD19 and CD20 as target structures on human leukemic cells. We found that a combination of bispecific antibody fragments (bsFab2) with target x CD3 and target x CD28 specificity induces vigorous autologous T-cell activation and killing of malignant cells in peripheral blood and bone marrow cultures from patients with chronic lymphocytic leukemia and follicular lymphoma. The bsFab2 targeting CD20 were considerably more effective than those binding to CD19. The colony-forming capacity of treated bone marrow was impaired due to large amounts of tumor necrosis factor alpha produced during bsFab2-induced T-cell activation. Neutralizing tumor necrosis factor alpha antibodies were found to reverse this negative effect without affecting T-cell activation and tumor cell killing. CD20 x CD28 bsFab2,when used alone rather than in combination,markedly improved the recognition of leukemic cells by allogeneic T cells. Therefore,these reagents may be capable of enhancing the immunogenicity of leukemic cells in general and,in particular,of increasing the antileukemic activity of allogeneic donor buffy coat cells in relapsed bone marrow transplanted patients.
View Publication