Steen R and Egeland T (JUN 1998)
Leukemia & lymphoma 30 1-2 23--30
CD34 molecule epitope distribution on cells of haematopoietic origin.
The CD34 molecule belongs to the mucin membrane molecule family and is expressed on virtually all normal haematopoietic progenitor cells (HPC). Due to its heavy glycosylation,several different epitopes exist on the molecule. Based on the sensitivity of the glycosylated molecule to degradation with a glycoprotease from Pasteurella haemolytica and neuraminidase,three classes of epitopes have been identified. The class I and II epitopes are probably related to the glycosylated part of the molecule while class III epitopes are core protein related. It has been known for some time that CD34 class I epitopes are absent on CD34 molecules expressed on high endothelial venules. Here we review recent observations that expression of both class I and II epitopes,but not class III epitopes,is impaired on mature myeloid CD34-pos. HPC while no diverse class epitope expression was observed on immature HPC. In addition,cells from patients with CD34-pos. acute myeloid leukaemia of FAB classification M4-M5,i.e.,leukaemic blast cells of relatively mature morphologic phenotype,also express less class I and II epitopes than class III epitopes. It therefore seems that HPC maturation and class I and II epitope deprivation are concomitant events and that CD34 class I and II epitopes are lost prior to downregulation of the CD34 molecule per se. The biological significance of this observation is discussed as well as the need to carefully select CD34-specific monoclonal antibodies for research and clinical purposes.
View Publication
Andrews RG et al. (OCT 1992)
Blood 80 7 1693--701
CD34+ marrow cells, devoid of T and B lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons.
CD34+ cells devoid of detectable mature and immature T and B lymphocytes,expressing the CD2,CD10,and CD20 antigens,were isolated from marrows of three pairs of sex-mismatched,mixed lymphocyte culture (MLC) nonreactive,sibling baboons. Reciprocal transplants were performed between members of each pair,using the sex chromosomes,identified by standard cytogenetic techniques,as markers of the transplanted cells. Five animals from these three pairs were transplanted with 0.6 to 2.1 x 10(6)/kg of isolated cryopreserved and/or fresh isolated cells that were greater than 95% to 97% CD34+. Before transplantation,animals were treated with either single (920 or 1,020 cGy) or split (700 cGy x 2) dose total body irradiation. All animals engrafted with donor cells,as demonstrated by cytogenetic analysis of bone marrow metaphase cells 4 weeks after transplantation,with days to white blood cell count (WBC) greater than 500 being 19 +/- 2,to WBC greater than 1,000 23 +/- 2,to absolute neutrophil count greater than 500 24 +/- 3,and to platelets greater than 20,000 30 +/- 7. Three animals died of infectious-related complications at 34,42,and 109 days after transplantation with evidence of host and donor cells (mixed chimerism) in marrow. Two animals remain alive and healthy more than 545 and 455 days after transplantation with stable mixed chimerism in marrow and blood. For these two animals,cytogenetic analysis of granulocyte/macrophage and erythroid colonies derived from marrow precursors between weeks 25 and 42 posttransplant showed evidence of mixed chimerism. Cytogenetic studies of CD2+ T cells and CD20+ B cells isolated from blood of these two animals between weeks 21 and 51 posttransplant showed the presence of mixed chimerism in both lymphocyte populations. Thus,isolated allogeneic CD34+ marrow cells devoid of detectable mature and immature T and B lymphocytes can engraft and reconstitute stable long-term myelopoiesis and lymphopoiesis in lethally irradiated baboons. These results are consistent with the hypothesis that CD34+ marrow cells contain pluripotent hematopoietic stem cells capable of fully reconstituting lymphohematopoiesis in the transplanted host.
View Publication
W. Lin et al. (JAN 2018)
Oncotarget 9 2 1992--2001
CD34- human placenta-derived mesenchymal stem cells protect against heat stroke mortality in rats.
CD34 is a transmembrane phosphoglycoprotein used to selectively enrich bone marrow in hematopoietic stem cells for transplantation. Treating rats with CD34+ cells derived from human umbilical cord blood before or after heat stroke has been shown to promote survival. We investigated whether CD34- human placenta-derived stem cells (PDMSCs) could improve survival following heat stroke in rats. Rats were subjected to heat stress (42°C for 98 min) to induce heat stroke. Intravenous administration of PDMSCs 1 day before or immediately after the onset of heat stroke improved survival by 60{\%} and 20{\%},respectively. Pre-treatment with CD34- PDMSCs protected against heat stroke injury more effectively than that treatment after injury. PDMSCs treatment attenuated cerebrovascular dysfunction,the inflammatory response,and lipid peroxidation. These data suggest human PDMSCs protect against heat stroke injury in rats. Moreover,these effects do not require the presence of CD34+ cells.
View Publication
Terry T et al. (JUN 2011)
PloS one 6 6 e20673
CD34/M-cadherin bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE/ mice.
BACKGROUND Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however,the optimal cell type and long-term efficacy are unknown. In this study,we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34/M-cad BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34/M-cad BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD. METHODS AND FINDINGS Colony-forming cell assays and flow cytometry analysis showed that CD34/M-cad BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE/ mice,CD34/M-cad BMCs alleviated ischemia and significantly improved blood flow compared with CD34/M-cad BMCs,CD34/M-cad BMCs,or unselected BMCs. Significantly more arterioles were seen in CD34/M-cad cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore,histologic assessment and morphometric analyses of hindlimbs treated with GFP CD34/M-cad cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFP CD34/M-cad cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34/M-cad progenitor cells. A cytokine antibody array revealed that CD34/M-cad cell-conditioned medium contained higher levels of cytokines in a unique pattern,including bFGF,CRG-2,EGF,Flt-3 ligand,IGF-1,SDF-1,and VEGFR-3,than did CD34/M-cad cell-conditioned medium. The proangiogenic cytokines secreted by CD34/M-cad cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34/M-cad cells during hypoxia. CONCLUSION CD34/M-cad BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE/ mice by consistently improving blood flow and promoting arteriogenesis. Additionally,CD34/M-cad BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors.
View Publication
L. Castagnoli et al. (Jan 2025)
Journal of Experimental & Clinical Cancer Research : CR 44
CD36 enrichment in HER2-positive mesenchymal stem cells drives therapy refractoriness in breast cancer
Growing evidence shows that the reprogramming of fatty acid (FA) metabolism plays a key role in HER2-positive (HER2 +) breast cancer (BC) aggressiveness,therapy resistance and cancer stemness. In particular,HER2 + BC has been defined as a "lipogenic disease" due to the functional and bi-directional crosstalk occurring between HER2-mediated oncogenic signaling and FA biosynthesis via FA synthase activity. In this context,the functional role exerted by the reprogramming of CD36-mediated FA uptake in HER2 + BC poor prognosis and therapy resistance remains unclear. In this study,we aimed to elucidate whether enhanced CD36 in mesenchymal HER2 + cancer stem cells (CSCs) is directly involved in anti-HER2 treatment refractoriness in HER2 + BC and to design future metabolism-based approaches targeting both FA reprogramming and the “root” of cancer. Molecular,biological and functional characterization of CD36-mediated FA uptake was investigated in HER2 + BC patients,cell lines,epithelial and mesenchymal CSCs. Cell proliferation was analyzed by SRB assay upon treatment with lapatinib,CD36 inhibitor,or Wnt antagonist/agonist. Engineered cell models were generated via lentivirus infection and transient silencing. CSC-like properties and tumorigenesis of HER2 + BC cells with or without CD36 depletion were examined by mammosphere forming efficiency assay,flow cytometry,cell sorting,ALDH activity assay and xenograft mouse model. FA uptake was examined by flow cytometry with FA BODIPY FL C16. Intratumor expression of CSC subsets was evaluated via multiplex immunostaining and immunolocalization analysis. Molecular data demonstrated that CD36 is significantly upmodulated on treatment in therapy resistant HER2 + BC patients and its expression levels in BC cells is correlated with FA uptake. We provided evidence of a consistent enrichment of CD36 in HER2 + epithelial-mesenchymal transition (EMT)-like CSCs from all tested resistant cell models that mechanistically occurs via Wnt signaling pathway activation. Consistently,both in vitro and in vivo dual blockade of CD36 and HER2 increased the anti-CSC efficacy of anti-HER2 drugs favoring the transition of the therapy resistant mesenchymal CSCs into therapy-sensitive mesenchymal-epithelial transition (MET)-like epithelial state. In addition,expression of CD36 in intratumor HER2 + mesenchymal CSCs is significantly associated with resistance to trastuzumab in HER2 + BC patients. These results support the metabolo-oncogenic nature of CD36-mediated FA uptake in HER2 + therapy-refractory BC. Our study provides evidence that targeting CD36 might be an effective metabolic therapeutic strategy in the treatment of this malignancy. The online version contains supplementary material available at 10.1186/s13046-025-03276-z.
View Publication
(Aug 2024)
Frontiers in Cardiovascular Medicine 11 Suppl 4
CD36 restricts lipid-associated macrophages accumulation in white adipose tissues during atherogenesis
Visceral white adipose tissues (WAT) regulate systemic lipid metabolism and inflammation. Dysfunctional WAT drive chronic inflammation and facilitate atherosclerosis. Adipose tissue-associated macrophages (ATM) are the predominant immune cells in WAT,but their heterogeneity and phenotypes are poorly defined during atherogenesis. The scavenger receptor CD36 mediates ATM crosstalk with other adipose tissue cells,driving chronic inflammation. Here,we combined the single-cell RNA sequencing technique with cell metabolic and functional assays on major WAT ATM subpopulations using a diet-induced atherosclerosis mouse model (Apoe-null). We also examined the role of CD36 using Apoe/Cd36 double-null mice. Based on transcriptomics data and differential gene expression analysis,we identified a previously undefined group of ATM displaying low viability and high lipid metabolism and labeled them as “unhealthy macrophages”. Their phenotypes suggest a subpopulation of ATM under lipid stress. We also identified lipid-associated macrophages (LAM),which were previously described in obesity. Interestingly,LAM increased 8.4-fold in Apoe/Cd36 double-null mice on an atherogenic diet,but not in Apoe-null mice. The increase in LAM was accompanied by more ATM lipid uptake,reduced adipocyte hypertrophy,and less inflammation. In conclusion,CD36 mediates a delicate balance between lipid metabolism and inflammation in visceral adipose tissues. Under atherogenic conditions,CD36 deficiency reduces inflammation and increases lipid metabolism in WAT by promoting LAM accumulation.
View Publication
(Jun 2024)
Frontiers in Immunology 15
CD39 delineates chimeric antigen receptor regulatory T cell subsets with distinct cytotoxic & regulatory functions against human islets
Human regulatory T cells (Treg) suppress other immune cells. Their dysfunction contributes to the pathophysiology of autoimmune diseases,including type 1 diabetes (T1D). Infusion of Tregs is being clinically evaluated as a novel way to prevent or treat T1D. Genetic modification of Tregs,most notably through the introduction of a chimeric antigen receptor (CAR) targeting Tregs to pancreatic islets,may improve their efficacy. We evaluated CAR targeting of human Tregs to monocytes,a human β cell line and human islet β cells in vitro. Targeting of HLA-A2-CAR (A2-CAR) bulk Tregs to HLA-A2+ cells resulted in dichotomous cytotoxic killing of human monocytes and islet β cells. In exploring subsets and mechanisms that may explain this pattern,we found that CD39 expression segregated CAR Treg cytotoxicity. CAR Tregs from individuals with more CD39low/- Tregs and from individuals with genetic polymorphism associated with lower CD39 expression (rs10748643) had more cytotoxicity. Isolated CD39− CAR Tregs had elevated granzyme B expression and cytotoxicity compared to the CD39+ CAR Treg subset. Genetic overexpression of CD39 in CD39low CAR Tregs reduced their cytotoxicity. Importantly,β cells upregulated protein surface expression of PD-L1 and PD-L2 in response to A2-CAR Tregs. Blockade of PD-L1/PD-L2 increased β cell death in A2-CAR Treg co-cultures suggesting that the PD-1/PD-L1 pathway is important in protecting islet β cells in the setting of CAR immunotherapy. In summary,introduction of CAR can enhance biological differences in subsets of Tregs. CD39+ Tregs represent a safer choice for CAR Treg therapies targeting tissues for tolerance induction.
View Publication
(Apr 2024)
PLOS Pathogens 20 4
CD39 expression by regulatory T cells participates in CD8+ T cell suppression during experimental
An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection,specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein,we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model,we found that Treg cells play a role during the initial stages after T. cruzi infection,restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived,effector T cell subsets,without affecting memory precursor cell formation or the expression of activation,exhaustion and functional markers. In addition,Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially,the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses,preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model. Author summaryChagas disease,caused by Trypanosoma cruzi,can result in severe health complications. While the exact mechanisms underlying the disease’s pathogenesis remain incompletely understood,the host’s inflammatory immune response is believed to play a critical role. To shed light on disease mechanisms and potential treatments,we investigated the impact of regulatory T (Treg) cells on the development of effector immune responses against T. cruzi. Our findings reveal that Treg cells dampen parasite-specific CD8+ T cells,a crucial arm of the immune response in counteracting the parasite. Notably,this regulatory influence occurs primarily during the early stages of T. cruzi infection. Furthermore,we observed that while Treg cells have minimal effects on antigen-presenting cells,they modulate the magnitude and phenotype of conventional CD4+ T cells. Importantly,we identified CD39,a molecule involved in the purinergic pathway,as essential for the suppressive functions of Treg cells during T. cruzi infection. Our findings enhance the understanding of the regulatory response during the acute phase of T. cruzi infection and may have implications for the development of novel therapeutic strategies.
View Publication
Bernstein HB et al. (SEP 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 6 3669--76
CD4 expression on activated NK cells: ligation of CD4 induces cytokine expression and cell migration.
NK cells play an important role in the innate immune response. We have isolated NK cells from human lymphoid tissues and found that these cells express the CD4 molecule on their surface at levels higher than those found on peripheral blood NK cells. To study the functional role of the CD4 molecule on NK cells,we developed an in vitro system by which we are able to obtain robust CD4 expression on NK cells derived from blood. CD4+ NK cells efficiently mediate NK cell cytotoxicity,and CD4 expression does not appear to alter lytic function. CD4+ NK cells are more likely to produce the cytokines gamma-IFN and TNF-alpha than are CD4- NK cells. Ligation of CD4 further increases the number of NK cells producing these cytokines. NK cells expressing CD4 are also capable of migrating toward the CD4-specific chemotactic factor IL-16,providing another function for the CD4 molecule on NK cells. Thus,the CD4 molecule is present and functional on NK cells and plays a role in innate immune responses as a chemotactic receptor and by increasing cytokine production,in addition to its well-described function on T cells as a coreceptor for Ag responsive cell activation.
View Publication
Ayasoufi K et al. (APR 2016)
Journal of Immunology 196 7 3180--90
CD4 T Cell Help via B Cells Is Required for Lymphopenia-Induced CD8 T Cell Proliferation.
Ab-mediated lymphoablation is commonly used in solid organ and hematopoietic cell transplantation. However,these strategies fail to control pathogenic memory T cells efficiently and to improve long-term transplant outcomes significantly. Understanding the mechanisms of T cell reconstitution is critical for enhancing the efficacy of Ab-mediated depletion in sensitized recipients. Using a murine analog of anti-thymocyte globulin (mATG) in a mouse model of cardiac transplantation,we previously showed that peritransplant lymphocyte depletion induces rapid memory T cell proliferation and only modestly prolongs allograft survival. We now report that T cell repertoire following depletion is dominated by memory CD4 T cells. Additional depletion of these residual CD4 T cells severely impairs the recovery of memory CD8 T cells after mATG treatment. The CD4 T cell help during CD8 T cell recovery depends on the presence of B cells expressing CD40 and intact CD40/CD154 interactions. The requirement for CD4 T cell help is not limited to the use of mATG in heart allograft recipients,and it is observed in nontransplanted mice and after CD8 T cell depletion with mAb instead of mATG. Most importantly,limiting helper signals increases the efficacy of mATG in controlling memory T cell expansion and significantly extends heart allograft survival in sensitized recipients. Our findings uncover the novel role for helper memory CD4 T cells during homeostatic CD8 T cell proliferation and open new avenues for optimizing lymphoablative therapies in allosensitized patients.
View Publication
A. K. Holbrook et al. (sep 2019)
Physiological reports 7 18 e14234
CD4+ T cell activation and associated susceptibility to HIV-1 infection in vitro increased following acute resistance exercise in human subjects.
Early studies in exercise immunology suggested acute bouts of exercise had an immunosuppressive effect in human subjects. However,recent data,show acute bouts of combined aerobic and resistance training increase both lymphocyte activation and proliferation. We quantified resistance exercise-induced changes in the activation state of CD4+ T lymphocytes via surface protein expression and using a medically relevant model of infection (HIV-1). Using a randomized cross-over design,10 untrained subjects completed a control and exercise session. The control session consisted of 30-min seated rest while the exercise session entailed 3 sets × 10 repetitions of back squat,leg press,and leg extensions at 70{\%} 1-RM with 2-min rest between each set. Venous blood samples were obtained pre/post each session. CD4+ T lymphocytes were isolated from whole blood by negative selection. Expression of activation markers (CD69 {\&} CD25) in both nonstimulated and stimulated (costimulation through CD3+ CD28) cells were assessed by flow cytometry. Resistance exercised-induced effects on intracellular activation was further evaluated via in vitro infection with HIV-1. Nonstimulated CD4+ T lymphocytes obtained postexercise exhibited elevated CD25 expression following 24 h in culture. Enhanced HIV-1 replication was observed in cells obtained postexercise. Our results demonstrate that an acute bout of resistance exercise increases the activation state of CD4+ T lymphocytes and results in a greater susceptibility to HIV-1 infection in vitro. These findings offer further evidence that exercise induces activation of T lymphocytes and provides a foundation for the use of medically relevant pathogens as indirect measures of intracellular activation.
View Publication
Snyder CM et al. (SEP 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 6 3932--41
CD4+ T cell help has an epitope-dependent impact on CD8+ T cell memory inflation during murine cytomegalovirus infection.
Murine CMV (MCMV) establishes a systemic,low-level persistent infection resulting in the accumulation of CD8(+) T cells specific for a subset of viral epitopes,a process called memory inflation. Although replicating virus is rarely detected in chronically infected C57BL/6 mice,these inflationary cells display a phenotype suggestive of repeated Ag stimulation,and they remain functional. CD4(+) T cells have been implicated in maintaining the function and/or number of CD8(+) T cells in other chronic infections. Moreover,CD4(+) T cells are essential for complete control of MCMV. Thus,we wondered whether CD4(+) T cell deficiency would result in impaired MCMV-specific CD8(+) T cell responses. Here we show that CD4(+) T cell deficiency had an epitope-specific impact on CD8(+) T cell memory inflation. Of the three codominant T cell responses during chronic infection,only accumulation of the late-appearing IE3-specific CD8(+) T cells was substantially impaired in CD4(+) T cell-deficient mice. Moreover,the increased viral activity did not drive increased CD8(+) T cell division or substantial dysfunction in any MCMV-specific population that we studied. These data show that CD4(+) T cell help is needed for inflation of a response that develops only during chronic infection but is otherwise dispensable for the steady state maintenance and function of MCMV-specific CD8(+) T cells.
View Publication