K. Yokoyama et al. ( 2022)
Frontiers in immunology 13 1016914
CEACAM 1, 3, 5 and 6 -positive classical monocytes correlate with interstitial lung disease in early systemic sclerosis.
BACKGROUND Systemic sclerosis (SSc) is a multiple-organ disease characterized by vascular damage,autoimmunity,and tissue fibrosis. Organ injuries such as interstitial lung diseases (ILD),resulting from inflammatory and fibrosis processes,lead to poor prognosis. Although autoantibodies are detected in the serum of patients with SSc,the mechanisms by which immune cells are involved in tissue inflammation and fibrosis is not fully understood. Recent studies have revealed carcinoembryonic antigen related cell adhesion molecule (CEACAM)-positive monocytes are involved in murine bleomycin-induced lung fibrosis. We investigated CEACAM-positive monocytes in patients with SSc to clarify the role of monocytes in the pathogenesis of SSc. METHODS The proportion of of CEACAM-positive classical monocytes in healthy controls (HCs) and patients with rheumatoid arthritis (RA) and SSc was evaluated using flow cytometry. The correlation between the proportion of CEACAM-positive monocytes and clinical parameters was analyzed in patients with SSc. Gene expression microarrays were performed in CEACAM-positive and negative monocytes in patients with SSc. Infiltration of CEACAM-positive monocytes into scleroderma skin was evaluated by immunohistochemical staining. RESULTS The proportion of CEACAM-positive classical monocytes was increased in patients with early SSc within 2 years after diagnosis,which positively correlated with ESR,serum IgG,and serum KL-6 and negatively correlated with %forced vital capacity. The percentage of CEACAM-positive monocytes decreased after immunosuppressive therapy. CEACAM6-positive cells among classical monocytes were significantly increased in patients with SSc compared with HCs and patients with rheumatoid arthritis. SSc serum induced CEACAM6 expression on monocytes from HCs. Functionally,CEACAM-positive monocytes produced higher levels of TNF-$\alpha$ and IL-1$\beta$ compared to CEACAM-negative cells and showed activation of the NF-$\kappa$B pathway. Furthermore,CEACAM6-positive monocytes infiltrated the dermis of SSc. CONCLUSIONS CEACAM-positive monocytes showed inflammatory phenotypes and may be involved in the tissue inflammation and fibrosis in early SSc. CEACAM-positive monocytes may be one of biomarkers to detect patients with progressive ILD,requiring therapeutic intervention.
View Publication
Rovituso DM et al. ( 2016)
Scientific reports 6 29847
CEACAM1 mediates B cell aggregation in central nervous system autoimmunity.
B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1(+) B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines,application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain -3 (TIM-3) on B cells,a novel molecule that has recently been described to induce anergy in T cells. Interestingly,elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall,these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease.
View Publication
Polisetti N et al. (JAN 2016)
Stem cells (Dayton,Ohio) 34 1 203--219
Cell Adhesion Molecules and Stem Cell-Niche-Interactions in the Limbal Stem Cell Niche.
Interactions between stem cells and their microenvironment are critical for regulation and maintenance of stem cell function. To elucidate the molecular interactions within the human limbal epithelial stem/progenitor cell (LEPC) niche,which is essential for maintaining corneal transparency and vision,we performed a comprehensive expression analysis of cell adhesion molecules (CAMs) using custom-made quantitative real-time polymerase chain reaction (qRT-PCR) arrays and laser capture-microdissected LEPC clusters,comprising LEPCs,melanocytes,mesenchymal cells,and transmigrating immune cells. We show that LEPCs are anchored to their supporting basement membrane by the laminin receptors $\$3$\$1 and $\$6$\$4 integrin and the dystroglycan complex,while intercellular contacts between LEPCs and melanocytes are mediated by N-,P-,and E-cadherin together with L1-CAM,a member of the immunoglobulin superfamily (Ig)CAMs. In addition to the LEPC-associated heparan sulfate proteoglycans syndecan-2,glypican-3,and glypican-4,the IgCAM members ICAM-1 and VCAM-1 were found to be variably expressed on LEPCs and associated niche cells and to be dynamically regulated in response to chemokines such as interferon-$\$ enhance interactions with immune cells. Moreover,junctional adhesion molecule JAM-C accumulating in the subepithelial limbal matrix,appeared to be involved in recruitment of immune cells,while mesenchymal stromal cells appeared to use the nephronectin receptor integrin $\$8 for approaching the limbal basement membrane. In summary,we identified a novel combination of cell surface receptors that may regulate both stable and dynamic cell-matrix and cell-cell interactions within the limbal niche. The findings provide a solid foundation for further functional studies and for advancement of our current therapeutic strategies for ocular surface reconstruction.
View Publication
Legartová et al. (APR 2014)
Biochemistry and cell biology = Biochimie et biologie cellulaire 92 2 85--93
Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.
Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events,including differentiation. In this study,we analyzed acetylated forms of histones H2A,H2B,and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-,di-,and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes,mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs,we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-,di-,and tri-acetylation of H4 were reduced,manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation,whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.
View Publication
Quadrato G et al. (MAY 2017)
Nature 545 7652 48--53
Cell diversity and network dynamics in photosensitive human brain organoids.
In vitro models of the developing brain such as three-dimensional brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However,the cells generated within organoids and the extent to which they recapitulate the regional complexity,cellular diversity and circuit functionality of the brain remain undefined. Here we analyse gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells,which are related to endogenous classes,including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (more than 9 months),allowing for the establishment of relatively mature features,including the formation of dendritic spines and spontaneously active neuronal networks. Finally,neuronal activity within organoids could be controlled using light stimulation of photosensitive cells,which may offer a way to probe the functionality of human neuronal circuits using physiological sensory stimuli.
View Publication
Migliaccio AR et al. (OCT 2000)
Blood 96 8 2717--22
Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity.
There is evidence that the total cellular content of placental cord blood (PCB) grafts is related to the speed of engraftment,though the total nucleated cell (TNC) dose is not a precise predictor of the time of neutrophil or platelet engraftment. It is important to understand the reasons for the quantitative association and to improve the criteria for selecting PCB grafts by using indices more precisely predictive of engraftment. The posttransplant course of 204 patients who received grafts evaluated for hematopoietic colony-forming cell (CFC) content among 562 patients reported previously were analyzed using univariate and multivariate life-table techniques to determine whether CFC doses predicted hematopoietic engraftment speed and risk for transplant-related events more accurately than the TNC dose. Actuarial times to neutrophil and platelet engraftment were shown to correlate with the cell dose,whether estimated as TNC or CFC per kilogram of recipient's weight. CFC association with the day of recovery of 500 neutrophils/microL,measured as the coefficient of correlation,was stronger than that of the TNC (R = -0.46 and -0.413,respectively). In multivariate tests of speed of platelet and neutrophil engraftment and of probability of posttransplantation events,the inclusion of CFC in the model displaced the significance of the high relative risks associated with TNC. The CFC content of PCB units is associated more rigorously with the major covariates of posttransplantation survival than is the TNC and is,therefore,a better index of the hematopoietic content of PCB grafts. (Blood. 2000;96:2717-2722)
View Publication
Raju R et al. (FEB 2017)
Stem cells and development 26 4 274--284
Cell Expansion During Directed Differentiation of Stem Cells Toward the Hepatic Lineage.
The differentiation of human pluripotent stem cells toward the hepatocyte lineage can potentially provide an unlimited source of functional hepatocytes for transplantation and extracorporeal bioartificial liver applications. It is anticipated that the quantities of cells needed for these applications will be in the order of 10(9)-10(10) cells,because of the size of the liver. An ideal differentiation protocol would be to enable directed differentiation to the hepatocyte lineage with simultaneous cell expansion. We introduced a cell expansion stage after the commitment of human embryonic stem cells to the endodermal lineage,to allow for at least an eightfold increase in cell number,with continuation of cell maturation toward the hepatocyte lineage. The progressive changes in the transcriptome were measured by expression array,and the expression dynamics of certain lineage markers was measured by mass cytometry during the differentiation and expansion process. The findings revealed that while cells were expanding they were also capable of progressing in their differentiation toward the hepatocyte lineage. In addition,our transcriptome,protein and functional studies,including albumin secretion,drug-induced CYP450 expression and urea production,all indicated that the hepatocyte-like cells obtained with or without cell expansion are very similar. This method of simultaneous cell expansion and hepatocyte differentiation should facilitate obtaining large quantities of cells for liver cell applications.
View Publication
Wu K et al. (JAN 2011)
The Journal of biological chemistry 286 3 2132--42
Cell fate determination factor Dachshund reprograms breast cancer stem cell function.
The cell fate determination factor Dachshund was cloned as a dominant inhibitor of the hyperactive epidermal growth factor receptor ellipse. The expression of Dachshund is lost in human breast cancer associated with poor prognosis. Breast tumor-initiating cells (TIC) may contribute to tumor progression and therapy resistance. Here,endogenous DACH1 was reduced in breast cancer cell lines with high expression of TIC markers and in patient samples of the basal breast cancer phenotype. Re-expression of DACH1 reduced new tumor formation in serial transplantations in vivo,reduced mammosphere formation,and reduced the proportion of CD44(high)/CD24(low) breast tumor cells. Conversely,lentiviral shRNA to DACH1 increased the breast (B)TIC population. Genome-wide expression studies of mammary tumors demonstrated DACH1 repressed a molecular signature associated with stem cells (SOX2,Nanog,and KLF4) and genome-wide ChIP-seq analysis identified DACH1 binding to the promoter of the Nanog,KLF4,and Lin28 genes. KLF4/c-Myc and Oct4/Sox2 antagonized DACH1 repression of BTIC. Mechanistic studies demonstrated DACH1 directly repressed the Nanog and Sox2 promoters via a conserved domain. Endogenous DACH1 regulates BTIC in vitro and in vivo.
View Publication
Seeger FH et al. (MAR 2007)
European heart journal 28 6 766--72
Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction.
AIM: The recently published REPAIR-AMI and ASTAMI trial showed differences in contractile recovery of left ventricular function after infusion of bone marrow-derived cells in acute myocardial infarction. Since the trials used different protocols for cell isolation and storage (REPAIR-AMI: Ficoll,storage in X-vivo 10 medium plus serum; ASTAMI: Lymphoprep,storage in NaCl plus plasma),we compared the functional activity of BMC isolated by the two different protocols. METHODS AND RESULTS: The recovery of total cell number,colony-forming units (CFU),and the number of mesenchymal stem cells were significantly reduced to 77 +/- 4%,83 +/- 16%,and 65 +/- 15%,respectively,when using the ASTAMI protocol compared with the REPAIR protocol. The capacity of the isolated BMC to migrate in response to stromal cell-derived factor 1 (SDF-1) was profoundly reduced when using the ASTAMI cell isolation procedure (42 +/- 8% and 78 +/- 3% reduction in healthy and CAD-patient cells,respectively). Finally,infusion of BMC into a hindlimb ischaemia model demonstrated a significantly blunted blood-flow-recovery by BMC isolated with the ASTAMI protocol (54 +/- 6% of the effect obtained by REPAIR cells). Comparison of the individual steps identified the use of NaCl and plasma for cell storage as major factors for functional impairment of the BMC. CONCLUSION: Cell isolation protocols have a major impact on the functional activity of bone marrow-derived progenitor cells. The assessment of cell number and viability may not entirely reflect the functional capacity of cells in vivo. Additional functional testing appears to be mandatory to assure proper cell function before embarking on clinical cell therapy trials.
View Publication
Guerra M et al. (JUL 2015)
Journal of neuropathology and experimental neurology 74 7 653--71
Cell Junction Pathology of Neural Stem Cells Is Associated With Ventricular Zone Disruption, Hydrocephalus, and Abnormal Neurogenesis.
Fetal-onset hydrocephalus affects 1 to 3 per 1,000 live births. It is not only a disorder of cerebrospinal fluid dynamics but also a brain disorder that corrective surgery does not ameliorate. We hypothesized that cell junction abnormalities of neural stem cells (NSCs) lead to the inseparable phenomena of fetal-onset hydrocephalus and abnormal neurogenesis. We used bromodeoxyuridine labeling,immunocytochemistry,electron microscopy,and cell culture to study the telencephalon of hydrocephalic HTx rats and correlated our findings with those in human hydrocephalic and nonhydrocephalic human fetal brains (n = 12 each). Our results suggest that abnormal expression of the intercellular junction proteins N-cadherin and connexin-43 in NSC leads to 1) disruption of the ventricular and subventricular zones,loss of NSCs and neural progenitor cells; and 2) abnormalities in neurogenesis such as periventricular heterotopias and abnormal neuroblast migration. In HTx rats,the disrupted NSC and progenitor cells are shed into the cerebrospinal fluid and can be grown into neurospheres that display intercellular junction abnormalities similar to those of NSC of the disrupted ventricular zone; nevertheless,they maintain their potential for differentiating into neurons and glia. These NSCs can be used to investigate cellular and molecular mechanisms underlying this condition,thereby opening the avenue for stem cell therapy.
View Publication
La Spada A et al. (DEC 2016)
The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 64 12 739--751
Cell Line Macroarray: An Alternative High-Throughput Platform to Analyze hiPSC Lines.
In the past decade,tissue microarray (TMA) technology has evolved as an innovative tool for high-throughput proteomics analysis and mainly for biomarker validation. Similarly,enormous amount of data can be obtained from the cell line macroarray (CLMA) technology,which developed from the TMA using formalin-fixed,paraffin-embedded cell pellets. Here,we applied CLMA technology in stem cell research and in particular to identify bona fide neogenerated human induced pluripotent stem cell (hiPSC) clones suitable for down the line differentiation. All hiPSC protocols generate tens of clones,which need to be tested to determine genetically stable cell lines suitable for differentiation. Screening methods generally rely on fluorescence-activated cell sorting isolation and coverslip cell growth followed by immunofluorescence; these techniques could be cumbersome. Here,we show the application of CLMA to identify neogenerated pluripotent cell colonies and neuronal differentiated cell products. We also propose the use of the automated image analyzer,TissueQuest,as a reliable tool to quickly select the best clones,based upon the level of expression of multiple pluripotent biomarkers.
View Publication
J. Hu et al. (jan 2022)
Journal for immunotherapy of cancer 10 1
Cell membrane-anchored and tumor-targeted IL-12 (attIL12)-T cell therapy for eliminating large and heterogeneous solid tumors.
BACKGROUND Adoptive T-cell transfer has become an attractive therapeutic approach for hematological malignancies but shows poor activity against large and heterogeneous solid tumors. Interleukin-12 (IL-12) exhibits potent antitumor efficacy against solid tumors,but its clinical application has been stalled because of toxicity. Here,we aimed to develop a safe approach to IL-12 T-cell therapy for eliminating large solid tumors. METHODS We generated a cell membrane-anchored IL-12 (aIL12),a tumor-targeted IL-12 (ttIL12),and a cell membrane-anchored and ttIL-12 (attIL12) and a cell membrane-anchored and tumor-targeted ttIL-12 (attIL12) armed T cells,chimeric antigen receptor-T cells,and T cell receptor-T (TCR-T) cells with each. We compared the safety and efficacy of these armed T cells in treating osteosarcoma patient-derived xenograft tumors and mouse melanoma tumors after intravenous infusions of the armed T cells. RESULTS attIL12-T cell infusion showed remarkable antitumor efficacy in human and mouse large solid tumor models. Mechanistically,attIL12-T cells targeted tumor cells expressing cell-surface vimentin,enriching effector T cell and interferon $\gamma$ production in tumors,which in turn stimulates dendritic cell maturation for activating secondary T-cell responses and tumor antigen spreading. Both attIL12- and aIL12-T-cell transfer eliminated peripheral cytokine release and the associated toxic effects. CONCLUSIONS This novel approach sheds light on the safe application of IL-12-based T-cell therapy for large and heterogeneous solid tumors.
View Publication