Z. Wang et al. (nov 2022)
Laboratory investigation; a journal of technical methods and pathology 102 11 1268--1279
The N6-methyladenosine writer WTAP contributes to the induction of immune tolerance post kidney transplantation by targeting regulatory T cells.
N6-methyladenosine (m6A) modification is involved in diverse immunoregulation,while the relationship between m6A modification and immune tolerance post kidney transplantation remains unclear. Expression of Wilms tumor 1-associating protein (WTAP),an m6A writer,was firstly detected in tolerant kidney transplant recipients (TOL). Then the role of WTAP on regulatory T (Treg) cell differentiation and function in CD4+ T cells from kidney transplant recipients with immune rejection (IR) was investigated. The potential target of WTAP and effect of WTAP on immune tolerance in vivo were subsequently verified. WTAP was upregulated in CD4+ T cells of TOL and positively correlated with Treg cell proportion. In vitro,WTAP overexpression promoted Treg cell differentiation and enhanced Treg cell-mediated suppression toward na?ve T cells. Forkhead box other 1 (Foxo1) was identified as a target of WTAP. WTAP enhanced m6A modification of Foxo1 mRNA in coding sequence (CDS) region,leading to up-regulation of Foxo1. Overexpression of m6A demethylase removed the effect of WTAP overexpression,while Foxo1 overexpression reversed these effects. WTAP overexpression alleviated allograft rejection in model mice,as evidenced by reduced inflammatory response and increased Treg population. Our study suggests that WTAP plays a positive role in induction of immune tolerance post kidney transplant by promoting Treg cell differentiation and function. leading to up-regulation of Foxo1. Overexpression of m6A demethylase removed the effect of WTAP overexpression while Foxo1 overexpression reversed these effects. WTAP overexpression alleviated allograft rejection in model mice as evidenced by reduced inflammatory response and increased Treg population. Our study suggests that WTAP plays a positive role in induction of immune tolerance post kidney transplant by promoting Treg cell differentiation and function."
View Publication
文献
T. Yarahmadov et al. (aug 2022)
Infection and immunity 90 8 e0017422
Primary Infection by E. multilocularis Induces Distinct Patterns of Cross Talk between Hepatic Natural Killer T Cells and Regulatory T Cells in Mice.
The larval stage of the helminthic cestode Echinococcus multilocularis can inflict tumor-like hepatic lesions that cause the parasitic disease alveolar echinococcosis in humans,with high mortality in untreated patients. Opportunistic properties of the disease have been established based on the increased incidence in immunocompromised patients and mouse models,indicating that an appropriate adaptive immune response is required for the control of the disease. However,cellular interactions and the kinetics of the local hepatic immune responses during the different stages of infection with E. multilocularis remain unknown. In a mouse model of oral infection that mimics the normal infection route in human patients,the networks of the hepatic immune response were assessed using single-cell RNA sequencing (scRNA-seq) of isolated hepatic CD3+ T cells at different infection stages. We observed an early and sustained significant increase in natural killer T (NKT) cells and regulatory T cells (Tregs). Early tumor necrosis factor (TNF)- and integrin-dependent interactions between these two cell types promote the formation of hepatic lesions. At late time points,downregulation of programmed cell death protein 1 (PD-1) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)-dependent signaling suppress the resolution of parasite-induced pathology. The obtained data provide fresh insight into the adaptive immune responses and local regulatory pathways at different infection stages of E. multilocularis in mice.
View Publication
文献
P.-H. Chang et al. ( 2022)
Therapeutic advances in medical oncology 14 1.76E+16
Association of early changes of circulating cancer stem-like cells with survival among patients with metastatic breast cancer.
BACKGROUND This study aimed to investigate the role of circulating tumor cells (CTCs) and circulating cancer stem-like cells (cCSCs) before and after one cycle of chemotherapy and assessed the effects of early changes in CTCs and cCSCs on the outcomes of patients with metastatic breast cancer. METHODS Patients with stage IV invasive ductal carcinoma of the breast who received first-line chemotherapy between April 2014 and January 2016 were enrolled. CTCs and cCSCs were measured before the first cycle of chemotherapy (baseline) and on day 21,before the second cycle of chemotherapy commenced; a negative selection strategy and flow cytometry protocol were employed. RESULTS CTC and cCSC counts declined in 68.8 and 45.5% of patients,respectively. Declines in CTCs and cCSCs following the first chemotherapy cycle were associated with superior chemotherapy responses,longer progression-free survival (PFS),and longer overall survival (OS). An early decline in cCSCs remained an independent prognostic indicator for OS and PFS in multivariate analysis. CONCLUSIONS A cCSC decline after one cycle of chemotherapy for metastatic breast cancer is predictive of a superior chemotherapy response and longer PFS and OS,implying that cCSC dynamic monitoring may be helpful in early prediction of treatment response and prognosis.
View Publication
文献
O. T. Kov\'acs et al. ( 2022)
Frontiers in immunology 13 892970
Proteomic Changes of Osteoclast Differentiation in Rheumatoid and Psoriatic Arthritis Reveal Functional Differences.
BACKGROUND Osteoclasts play a crucial role in the maintenance,repair,and remodeling of bones of the adult vertebral skeleton due to their bone resorption capability. Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are associated with increased activity of osteoclasts. OBJECTIVES Our study aimed to investigate the dynamic proteomic changes during osteoclast differentiation in healthy donors,in RA,and PsA. METHODS Blood samples of healthy donors,RA,and PsA patients were collected,and monocytes were isolated and differentiated into osteoclasts in vitro using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor $\kappa$B ligand (RANK-L). Mass spectrometry-based proteomics was used to analyze proteins from cell lysates. The expression changes were analyzed with Gene Set Enrichment Analysis (GSEA). RESULTS The analysis of the proteomic changes revealed that during the differentiation of the human osteoclasts,expression of the proteins involved in metabolic activity,secretory function,and cell polarity is increased; by contrast,signaling pathways involved in the immune functions are downregulated. Interestingly,the differences between cells of healthy donors and RA/PsA patients are most pronounced after the final steps of differentiation to osteoclasts. In addition,both in RA and PsA the differentiation is characterized by decreased metabolic activity,associated with various immune pathway activities; furthermore by accelerated cytokine production in RA. CONCLUSIONS Our results shed light on the characteristic proteomic changes during human osteoclast differentiation and expression differences in RA and PsA,which reveal important pathophysiological insights in both diseases.
View Publication
文献
G. Wigerblad et al. (aug 2022)
Journal of immunology (Baltimore,Md. : 1950) 209 4 772--782
Single-Cell Analysis Reveals the Range of Transcriptional States of Circulating Human Neutrophils.
Neutrophils are the most abundant leukocytes in human blood and are essential components of innate immunity. Until recently,neutrophils were considered homogeneous and transcriptionally inactive cells,but both concepts are being challenged. Single-cell RNA sequencing (scRNA-seq) offers an unbiased view of cells along a continuum of transcriptional states. However,the use of scRNA-seq to characterize neutrophils has proven technically difficult,explaining in part the paucity of published single-cell data on neutrophils. We have found that modifications to the data analysis pipeline,rather than to the existing scRNA-seq chemistries,can significantly increase the detection of human neutrophils in scRNA-seq. We have then applied a modified pipeline to the study of human peripheral blood neutrophils. Our findings indicate that circulating human neutrophils are transcriptionally heterogeneous cells,which can be classified into one of four transcriptional clusters that are reproducible among healthy human subjects. We demonstrate that peripheral blood neutrophils shift from relatively immature (Nh0) cells,through a transitional phenotype (Nh1),into one of two end points defined by either relative transcriptional inactivity (Nh2) or high expression of type I IFN-inducible genes (Nh3). Transitions among states are characterized by the expression of specific transcription factors. By simultaneously measuring surface proteins and intracellular transcripts at the single-cell level,we show that these transcriptional subsets are independent of the canonical surface proteins that are commonly used to define and characterize human neutrophils. These findings provide a new view of human neutrophil heterogeneity,with potential implications for the characterization of neutrophils in health and disease.
View Publication
文献
Z. Dai et al. (sep 2022)
Phytomedicine : international journal of phytotherapy and phytopharmacology 104 154335
Discovery of potent immune-modulating molecule taccaoside A against cancers from structures-active relationships of natural steroidal saponins.
BACKGROUND In recent years,the T-cell therapy and immune checkpoint inhibitors toward CTLA-4 and PD-1/PD-L1 axis antibody therapy have acquired encouraging success. However,most of patients were still not benefited with lots of troubles,such as low penetration of tissues/cells,strong immunogenicity and cytokine release syndrome,and long manufacturing process and expensive costs. By contrast,the immune-modulating small molecules possessed natural advantages to overcome these obstacles and might achieve greater success. PURPOSE Exploring the potent immune-modulating natural small molecules and revealing what kinds of molecules or structures with the immunomodulatory activity against cancers. METHODS A novel non-cytotoxic T-cell immunomodulating screening model was used to identify the cytotoxic/selective/immunomodulatory bioactivity for 148 natural steroidal saponins. The structure-activity relationships (SARs) research was used to reveal the key groups for immunomodulation/cytotoxicity/selectivity. The negative selection was used to isolate and purify the T-cell. The cell viability assay was used to measure the anti-cancer effect in vitro. The ELISA assay was used to detect the cytokines for IL-1$\beta$,IL-6,TNF-$\alpha$,IFN-$\gamma$,IL-12,perforin and granzyme B (GZMB). The western blotting assay was used to research the immunomodulatory mechanism. The siRNA knockdown was used to generate the IFN-$\gamma$ resistant melanoma cells. The NOG immune-deficient mice were used to evaluate the anti-tumor efficacy in vivo. The peripheral blood samples from 10 cancer patients were used to detect the broad population anti-tumor efficacy. RESULTS It was reported that the correlation among structures and immunomodulation/ cytotoxicity/selectivity,in which opening ring-F with 26-O-glucopyranosyl,disaccharide and trisaccharide chains at C-3,steric hindrance and polarity of C-22 were key immunomodulatory groups. Moreover,taccaoside A was identified as the most potent candidate against cancer cells,including non-small cell lung cancer,triple negative breast cancer,and the IFN-$\gamma$ resistant melanoma,partly through enhancing T lymphocyte mTORC1-Blimp-1 signal to secrete GZMB. Besides,10 patients derived T-cell also would be modulated against cancer cells in vitro. Moreover,the overall survival was great extended (>140 days vs 93 days) with nearly 100% tumor burden disappearance (0 mm3vs 1006 ± 79.5 mm3) in mice. CONCLUSION This work demonstrated one possibility for this concerned purpose,and identified a potent immune-modulating natural molecule taccaoside A,which might contribute to cancer immunotherapy in future.
View Publication
文献
L. Min et al. (aug 2022)
Stem cell research 63 102849
Establishment of a human iPSC line (SUTCMi001-A) derived from a healthy donor.
This study describes the characterization of one induced pluripotent stem cell line (iPSC) from a healthy female. It is crucial to use iPSCs derived from healthy individuals as controls in genetic disease studies. Thus,we established a human iPSC cell line derived from healthy people. The iPSC cell line was generated in our lab from the peripheral blood mononuclear cells (PBMCs) of a 28-year-old girl. The generated hiPSC line is free of episomal vectors,has a normal karyotype,expresses pluripotency markers and can differentiate into three germ layers in vivo.
View Publication
文献
J. Bruminhent et al. (nov 2022)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 22 11 2651--2660
An additional dose of viral vector COVID-19 vaccine and mRNA COVID-19 vaccine in kidney transplant recipients: A randomized controlled trial (CVIM 4 study).
Immunogenicity following an additional dose of Coronavirus disease 2019 (COVID-19) vaccine was investigated in an extended primary series among kidney transplant (KT) recipients. Eighty-five KT participants were randomized to receive either an mRNA (M group; n =??43) or viral vector (V group; n =??42) vaccine. Among them,62% were male,with a median (IQR) age of 50 (43-59) years and post-transplantation duration of 46 (26-82) months. At 2??weeks post-additional dose,there was no difference in the seroconversion rate between the M and V groups (70% vs. 65%,p =??.63). A median (IQR) of anti-RBD antibody level was not statistically different between the M group compared with the V group (51.8 [5.1-591] vs. 28.5 [2.9-119.3] BAU/ml,p =??.18). Furthermore,the percentage of participants with positive SARS-CoV-2 surrogate virus neutralization test results was not statistically different between groups (20% vs. 15%,p =??.40). S1-specific T cell and RBD-specific B cell responses were also comparable between the M and V groups (230 [41-420] vs. 268 [118-510],p =??.65 and 2 [0-10] vs. 2 [0-13] spot-forming units/106 peripheral blood mononuclear cells,p =??.60). In conclusion,compared with an additional dose of viral vector COVID-19 vaccine,a dose of mRNA COVID-19 vaccine did not elicit significantly different responses in KT recipients,regarding either humoral or cell-mediated immunity. (TCTR20211102003).
View Publication
文献
C. Liu et al. (jul 2022)
Scientific reports 12 1 12068
Validation and promise of a TCR mimic antibody for cancer immunotherapy of hepatocellular carcinoma.
Monoclonal antibodies are at the vanguard of the most promising cancer treatments. Whereas traditional therapeutic antibodies have been limited to extracellular antigens,T cell receptor mimic (TCRm) antibodies can target intracellular antigens presented by cell surface major histocompatibility complex (MHC) proteins. TCRm antibodies can therefore target a repertoire of otherwise undruggable cancer antigens. However,the consequences of off-target peptide/MHC recognition with engineered T cell therapies are severe,and thus there are significant safety concerns with TCRm antibodies. Here we explored the specificity and safety profile of a new TCRm-based T cell therapy for hepatocellular carcinoma (HCC),a solid tumor for which no effective treatment exists. We targeted an alpha-fetoprotein peptide presented by HLA-A*02 with a highly specific TCRm,which crystallographic structural analysis showed binds directly over the HLA protein and interfaces with the full length of the peptide. We fused the TCRm to the ? and ? subunits of a TCR,producing a signaling AbTCR construct. This was combined with an scFv/CD28 co-stimulatory molecule targeting glypican-3 for increased efficacy towards tumor cells. This AbTC + co-stimulatory T cell therapy showed potent activity against AFP-positive cancer cell lines in vitro and an in an in vivo model and undetectable activity against AFP-negative cells. In an in-human safety assessment,no significant adverse events or cytokine release syndrome were observed and evidence of efficacy was seen. Remarkably,one patient with metastatic HCC achieved a complete remission after nine months and ultimately qualified for a liver transplant.
View Publication
文献
I. D. Ferguson et al. (jul 2022)
Nature communications 13 1 4121
The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance.
The myeloma surface proteome (surfaceome) determines tumor interaction with the microenvironment and serves as an emerging arena for therapeutic development. Here,we use glycoprotein capture proteomics to define the myeloma surfaceome at baseline,in drug resistance,and in response to acute drug treatment. We provide a scoring system for surface antigens and identify CCR10 as a promising target in this disease expressed widely on malignant plasma cells. We engineer proof-of-principle chimeric antigen receptor (CAR) T-cells targeting CCR10 using its natural ligand CCL27. In myeloma models we identify proteins that could serve as markers of resistance to bortezomib and lenalidomide,including CD53,CD10,EVI2B,and CD33. We find that acute lenalidomide treatment increases activity of MUC1-targeting CAR-T cells through antigen upregulation. Finally,we develop a miniaturized surface proteomic protocol for profiling primary plasma cell samples with low inputs. These approaches and datasets may contribute to the biological,therapeutic,and diagnostic understanding of myeloma.
View Publication
文献
R. Bignold et al. (jul 2022)
Respiratory research 23 1 183
Chemokine CXCL12 drives pericyte accumulation and airway remodeling in allergic airway disease.
BACKGROUND Airway remodeling is a significant contributor to impaired lung function in chronic allergic airway disease. Currently,no therapy exists that is capable of targeting these structural changes and the consequent loss of function. In the context of chronic allergic inflammation,pericytes have been shown to uncouple from the pulmonary microvasculature,migrate to areas of inflammation,and significantly contribute to airway wall remodeling and lung dysfunction. This study aimed to elucidate the mechanism by which pulmonary pericytes accumulate in the airway wall in a model of chronic allergic airway inflammation. METHODS Mice were subjected to a protocol of chronic airway inflammation driven by the common environmental aeroallergen house dust mite. Phenotypic changes to lung pericytes were assessed by flow cytometry and immunostaining,and the functional capacity of these cells was evaluated using in vitro migration assays. The molecular mechanisms driving these processes were targeted pharmacologically in vivo and in vitro. RESULTS Pericytes demonstrated increased CXCR4 expression in response to chronic allergic inflammation and migrated more readily to its cognate chemokine,CXCL12. This increase in migratory capacity was accompanied by pericyte accumulation in the airway wall,increased smooth muscle thickness,and symptoms of respiratory distress. Pericyte uncoupling from pulmonary vessels and subsequent migration to the airway wall were abrogated following topical treatment with the CXCL12 neutraligand LIT-927. CONCLUSION These results provide new insight into the role of the CXCL12/CXCR4 signaling axis in promoting pulmonary pericyte accumulation and airway remodeling and validate a novel target to address tissue remodeling associated with chronic inflammation.
View Publication
文献
T. Kwok et al. ( 2022)
Frontiers in aging 3 838943
Age-Associated Changes to Lymph Node Fibroblastic Reticular Cells.
The decreased proportion of antigen-inexperienced,na{\{i}}ve T cells is a hallmark of aging in both humans and mice and contributes to reduced immune responses particularly against novel and re-emerging pathogens. Na{\"{i}}ve T cells depend on survival signals received during their circulation among the lymph nodes by direct contacts with stroma in particular fibroblastic reticular cells. Macroscopic changes to the architecture of the lymph nodes have been described but it is unclear how lymph node stroma are altered with age and whether these changes contribute to reduced na{\"{i}}ve T cell maintenance. Here using 2-photon microscopy we determined that the aged lymph node displayed increased fibrosis and correspondingly that na{\"{i}}ve T-cell motility was impaired in the aged lymph node especially in proximity to fibrotic deposition. Functionally adoptively transferred young na{\"{i}}ve T-cells exhibited reduced homeostatic turnover in aged hosts supporting the role of T cell-extrinsic mechanisms that regulate their survival. Further we determined that early development of resident fibroblastic reticular cells was impaired which may correlate to the declining levels of na{\"{i}}ve T-cell homeostatic factors observed in aged lymph nodes. Thus our study addresses the controversy as to whether aging impacts the composition lymph node stroma and supports a model in which impaired differentiation of lymph node fibroblasts and increased fibrosis inhibits the interactions necessary for na{\"{i}}ve T cell homeostasis."
View Publication