Pino CJ et al. (FEB 2013)
Nephrology,dialysis,transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 28 2 296--302
Cell-based approaches for the treatment of systemic inflammation.
Acute and chronic solid organ failures are costly disease processes with high mortality rates. Inflammation plays a central role in both acute and chronic organ failure,including heart,lung and kidney. In this regard,new therapies for these disorders have focused on inhibiting the mediators of inflammation,including cytokines and free radicals,with little or no success in clinical studies. Recent novel treatment strategies have been directed to cell-based rather than mediator-based approaches,designed to immunomodulate the deleterious effects of inflammation on organ function. One approach,cell therapy,replaces cells that were damaged in the acute or chronic disease process with stem/progenitor technology,to rebalance excessive inflammatory states. As an example of this approach,the use of an immunomodulatory role of renal epithelial progenitor cells to treat acute renal failure (ARF) and multiorgan failure arising from acute kidney injury is reviewed. A second therapeutic pathway,cell processing,does not incorporate stem/progenitor cells in the device,but rather biomimetic materials that remove and modulate the primary cellular components,which promote the worsening organ tissue injury associated with inflammation. The use of an immunomodulating leukocyte selective cytopheretic inhibitory device is also reviewed as an example of this cell processing approach. Both of these unconventional strategies have shown early clinical efficacy in pilot clinical trials and may transform the therapeutic approach to organ failure disorders.
View Publication
Modlich U et al. (OCT 2006)
Blood 108 8 2545--53
Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity.
Retroviral vectors with long terminal repeats (LTRs),which contain strong enhancer/promoter sequences at both ends of their genome,are widely used for stable gene transfer into hematopoietic cells. However,recent clinical data and mouse models point to insertional activation of cellular proto-oncogenes as a dose-limiting side effect of retroviral gene delivery that potentially induces leukemia. Self-inactivating (SIN) retroviral vectors do not contain the terminal repetition of the enhancer/promoter,theoretically attenuating the interaction with neighboring cellular genes. With a new assay based on in vitro expansion of primary murine hematopoietic cells and selection in limiting dilution,we showed that SIN vectors using a strong internal retroviral enhancer/promoter may also transform cells by insertional mutagenesis. Most transformed clones,including those obtained after dose escalation of SIN vectors,showed insertions upstream of the third exon of Evi1 and in reverse orientation to its transcriptional orientation. Normalizing for the vector copy number,we found the transforming capacity of SIN vectors to be significantly reduced when compared with corresponding LTR vectors. Additional modifications of SIN vectors may further increase safety. Improved cell-culture assays will likely play an important role in the evaluation of insertional mutagenesis.
View Publication
Boudreau JE et al. (AUG 2016)
Immunity
Cell-Extrinsic MHC Class I Molecule Engagement Augments Human NK Cell Education Programmed by Cell-Intrinsic MHC Class I.
The effector potential of NK cells is counterbalanced by their sensitivity to inhibition by self" MHC class I molecules in a process called "education." In humans�
View Publication
Werner A et al. (SEP 2015)
Nature 525 7570 523--527
Cell-fate determination by ubiquitin-dependent regulation of translation
Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks,yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1,the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination.
View Publication
Schwarzenbach H et al. (FEB 2009)
Clinical cancer research : an official journal of the American Association for Cancer Research 15 3 1032--8
Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer.
PURPOSE: Circulating cell-free DNA in the blood of cancer patients harbors tumor-specific aberrations. Here,we investigated whether this DNA might also reflect the presence of circulating tumor cells (CTC). EXPERIMENTAL DESIGN: To identify the source of cell-free DNA in blood,plasma derived from 81 patients with prostate cancer was examined for CTCs and cell-free DNA. An epithelial immunospot assay was applied for detection of CTCs,and a PCR-based fluorescence microsatellite analysis with a panel of 14 polymorphic markers was used for detection of allelic imbalances (AI). RESULTS: The plasma DNA levels significantly correlated with the diagnosis subgroups of localized (stage M0,n = 69) and metastasized prostate cancer (stage M1,n = 12; P = 0.03) and with the tumor stage of these patients (P textless 0.005). AI was found on cell-free DNA in plasma from 45.0% and 58.5% of M0 and M1 patients,respectively. Detection of CTCs showed that 71.0% or 92.0% of the M0 and M1 patients harbored 1 to 40 CTCs in their blood,respectively. The occurrence of CTCs correlated with tumor stage (P textless 0.03) and increasing Gleason scores (P = 0.04). Notably,significant associations of the number of CTCs with the AI frequencies at the markers D8S137 (P = 0.03),D9S171 (P = 0.04),and D17S855 (P = 0.02) encoding the cytoskeletal protein dematin,the inhibitor of the cyclin-dependent kinase CDKN2/p16 and BRCA1,respectively,were observed. CONCLUSIONS: These findings show,for the first time,a relationship between the occurrence of CTCs and circulating tumor-associated DNA in blood,which,therefore,might become a valuable new source for monitoring metastatic progression in cancer patients.
View Publication
Laudanski K et al. (OCT 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 42 15564--9
Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways.
Monitoring genome-wide,cell-specific responses to human disease,although challenging,holds great promise for the future of medicine. Patients with injuries severe enough to develop multiple organ dysfunction syndrome have multiple immune derangements,including T cell apoptosis and anergy combined with depressed monocyte antigen presentation. Genome-wide expression analysis of highly enriched circulating leukocyte subpopulations,combined with cell-specific pathway analyses,offers an opportunity to discover leukocyte regulatory networks in critically injured patients. Severe injury induced significant changes in T cell (5,693 genes),monocyte (2,801 genes),and total leukocyte (3,437 genes) transcriptomes,with only 911 of these genes common to all three cell populations (12%). T cell-specific pathway analyses identified increased gene expression of several inhibitory receptors (PD-1,CD152,NRP-1,and Lag3) and concomitant decreases in stimulatory receptors (CD28,CD4,and IL-2Ralpha). Functional analysis of T cells and monocytes confirmed reduced T cell proliferation and increased cell surface expression of negative signaling receptors paired with decreased monocyte costimulation ligands. Thus,genome-wide expression from highly enriched cell populations combined with knowledge-based pathway analyses leads to the identification of regulatory networks differentially expressed in injured patients. Importantly,application of cell separation,genome-wide expression,and cell-specific pathway analyses can be used to discover pathway alterations in human disease.
View Publication
Starlets D et al. (JUN 2006)
Blood 107 12 4807--16
Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival.
CD74 is an integral membrane protein that was thought to function mainly as an MHC class II chaperone. However,CD74 was recently shown to have a role as an accessory-signaling molecule. Our studies demonstrated that CD74 regulates B-cell differentiation by inducing a pathway leading to the activation of transcription mediated by the NF-kappaB p65/RelA homodimer and its coactivator,TAF(II)105. Here,we show that CD74 stimulation with anti-CD74 antibody leads to an induction of a signaling cascade resulting in NF-kappaB activation,entry of the stimulated cells into the S phase,elevation of DNA synthesis,cell division,and augmented expression of BCL-X(L). These studies therefore demonstrate that surface CD74 functions as a survival receptor.
View Publication
Yuan SH et al. (MAR 2011)
PLoS ONE 6 3 e17540
Cell-surface marker signatures for the Isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells
BACKGROUND: Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC),glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS). METHODOLOGY/PRINCIPAL FINDINGS: We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC,glia and neurons. We isolated a population of NSC that was CD184(+)/CD271(-)/CD44(-)/CD24(+) from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184(-)/CD44(-)/CD15(LOW)/CD24(+) and a population of glia that was CD184(+)/CD44(+) were subsequently purified from cultures of differentiating NSC. Purified neurons were viable,expressed mature and subtype-specific neuronal markers,and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC,glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations.
View Publication
Kucia M et al. (JAN 2006)
Leukemia 20 1 18--28
Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke.
The concept that bone marrow (BM)-derived cells participate in neural regeneration remains highly controversial and the identity of the specific cell type(s) involved remains unknown. We recently reported that the BM contains a highly mobile population of CXCR4+ cells that express mRNA for various markers of early tissue-committed stem cells (TCSCs),including neural TCSCs. Here,we report that these cells not only express neural lineage markers (beta-III-tubulin,Nestin,NeuN,and GFAP),but more importantly form neurospheres in vitro. These neural TCSCs are present in significant amounts in BM harvested from young mice but their abundance and responsiveness to gradients of motomorphogens,such as SDF-1,HGF,and LIF,decreases with age. FACS analysis,combined with analysis of neural markers at the mRNA and protein levels,revealed that these cells reside in the nonhematopoietic CXCR4+/Sca-1+/lin-/CD45 BM mononuclear cell fraction. Neural TCSCs are mobilized into the peripheral-blood following stroke and chemoattracted to the damaged neural tissue in an SDF-1-CXCR4-,HGF-c-Met-,and LIF-LIF-R-dependent manner. Based on these data,we hypothesize that the postnatal BM harbors a nonhematopoietic population of cells that express markers of neural TCSCs that may account for the beneficial effects of BM-derived cells in neural regeneration.
View Publication
Ramadan A et al. (SEP 2010)
Genes to cells : devoted to molecular & cellular mechanisms 15 9 983--94
Cells with hematopoietic activity in the mouse placenta reside in side population.
The discovery of a major hematopoietic stem cell pool in midgestation mouse embryo has defined the placenta as an important hematopoietic anatomical site. In this study,we examined the flow cytometric pattern of mouse placenta cells on embryonic days (E) 10.5 to E15.5,in view of CD45 and c-Kit expression. We also determined which population of these cells shows differentiation potential toward multiple hematopoietic lineages by performing coculture with OP9 stromal cells and colony-forming assay in methylcellulose. Only CD45(+)c-Kit(+) population showed the ability to form hematopoietic colonies including multiple lineages. To distinguish which fraction of placenta cells have the hematopoietic activity,we used GFP transgenic mice in which the fetal part of the placenta is GFP positive and the maternal part is GFP negative. E11.5 and E13.5 CD45(+)c-Kit(+) placental cells that have ability to form hematopoietic colonies are the fetal GFP positive placental cells. E11.5 and E13.5 CD45(+)c-Kit(+) placental cells that have an ability to form hematopoietic colonies mainly reside in Hoechst dye-effluxing side population area (SP). Taken together,in the placenta of mouse embryo,we conclude that SP cells in the CD45(+)c-Kit(+) fetal placental cells have the ability to form hematopoietic colonies.
View Publication
(Jul 2024)
iScience 27 9
CelltypeR: A flow cytometry pipeline to characterize single cells from brain organoids
SummaryMotivated by the cellular heterogeneity in complex tissues,particularly in brain and induced pluripotent stem cell (iPSC)-derived brain models,we developed a complete workflow to reproducibly characterize cell types in complex tissues. Our approach combines a flow cytometry (FC) antibody panel with our computational pipeline CelltypeR,enabling dataset aligning,unsupervised clustering optimization,cell type annotating,and statistical comparisons. Applied to human iPSC derived midbrain organoids,it successfully identified the major brain cell types. We performed fluorescence-activated cell sorting of CelltypeR-defined astrocytes,radial glia,and neurons,exploring transcriptional states by single-cell RNA sequencing. Among the sorted neurons,we identified subgroups of dopamine neurons: one reminiscent of substantia nigra cells most vulnerable in Parkinson’s disease. Finally,we used our workflow to track cell types across a time course of organoid differentiation. Overall,our adaptable analysis framework provides a generalizable method for reproducibly identifying cell types across FC datasets in complex tissues. Graphical abstract Highlights•CelltypeR is a flow cytometry and computational pipeline for cell type quantification•Identified brain cell types in midbrain organoids and measured changes in proportions•Enriched selected populations using FACS and characterized by single-cell RNA sequencing•Identified substantia nigra–like dopaminergic neurons sensitive in Parkinson’s disease Neuroscience; Cell biology; Omics
View Publication
Viollet B et al. ( 2012)
Clinical science (London,England : 1979) 122 6 253--270
Cellular and molecular mechanisms of metformin: an overview.
Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin,a potent antihyperglycaemic agent now recommended as the first-line oral therapy for T2D (Type 2 diabetes). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production,mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition,the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase),a cellular metabolic sensor,providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The demonstration that respiratory chain complex I,but not AMPK,is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism,metformin has been reported to restore ovarian function in PCOS (polycystic ovary syndrome),reduce fatty liver,and to lower microvascular and macrovascular complications associated with T2D. Its use has also recently been suggested as an adjuvant treatment for cancer or gestational diabetes and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response,a promising new step towards personalized medicine in the treatment of T2D.
View Publication