Xu X et al. (MAR 2017)
Stem Cell Reports 8 3 619--633
Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable,synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells,including impaired neural rosette formation,increased susceptibility to growth factor withdrawal,and deficits in mitochondrial respiration,are rescued in isogenic controls. Importantly,using genome-wide expression analysis,we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines,suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities,and the importance of isogenic controls for disease modeling using hiPSCs.
View Publication
Reference
Bayat Mokhtari R et al. (DEC 2017)
BMC Cancer 17 1 156
Acetazolamide potentiates the anti-tumor potential of HDACi, MS-275, in neuroblastoma
BACKGROUND Neuroblastoma (NB),a tumor of the primitive neural crest,despite aggressive treatment portends a poor long-term survival for patients with advanced high stage NB. New treatment strategies are required. METHODS We investigated coordinated targeting of essential homeostatic regulatory factors involved in cancer progression,histone deacetylases (HDACs) and carbonic anhydrases (CAs). RESULTS We evaluated the antitumor potential of the HDAC inhibitor (HDACi),pyridylmethyl-N-4-[(2-aminophenyl)-carbamoyl]-benzyl-carbamate (MS-275) in combination with a pan CA inhibitor,acetazolamide (AZ) on NB SH-SY5Y,SK-N-SH and SK-N-BE(2) cells. The key observation was that the combination AZ + MS-275 significantly inhibited growth,induced cell cycle arrest and apoptosis,and reduced migration capacity of NB cell line SH-SY5Y. In addition,this combination significantly inhibited tumor growth in vivo,in a pre-clinical xenograft model. Evidence was obtained for a marked reduction in tumorigenicity and in the expression of mitotic,proliferative,HIF-1α and CAIX. NB xenografts of SH-SY5Y showed a significant increase in apoptosis. CONCLUSION MS-275 alone at nanomolar concentrations significantly reduced the putative cancer stem cell (CSC) fraction of NB cell lines,SH-SY5Y and SK-N-BE(2),in reference to NT2/D1,a teratocarcinoma cell line,exhibiting a strong stem cell like phenotype in vitro. Whereas stemness genes (OCT4,SOX2 and Nanog) were found to be significantly downregulated after MS-275 treatment,this was further enhanced by AZ co-treatment. The significant reduction in initial tumorigenicity and subsequent abrogation upon serial xenografting suggests potential elimination of the NB CSC fraction. The significant potentiation of MS-275 by AZ is a promising therapeutic approach and one amenable for administration to patients given their current clinical utility.
View Publication
Reference
Jorissen W et al. (FEB 2017)
Scientific reports 7 43410
Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile with dysfunctional HDL.
Lipoproteins modulate innate and adaptive immune responses. In the chronic inflammatory disease multiple sclerosis (MS),reports on lipoprotein level alterations are inconsistent and it is unclear whether lipoprotein function is affected. Using nuclear magnetic resonance (NMR) spectroscopy,we analysed the lipoprotein profile of relapsing-remitting (RR) MS patients,progressive MS patients and healthy controls (HC). We observed smaller LDL in RRMS patients compared to healthy controls and to progressive MS patients. Furthermore,low-BMI (BMI ≤ 23 kg/m(2)) RRMS patients show increased levels of small HDL (sHDL),accompanied by larger,triglyceride (TG)-rich VLDL,and a higher lipoprotein insulin resistance (LP-IR) index. These alterations coincide with a reduced serum capacity to accept cholesterol via ATP-binding cassette (ABC) transporter G1,an impaired ability of HDL3 to suppress inflammatory activity of human monocytes,and modifications of HDL3's main protein component ApoA-I. In summary,lipoprotein levels and function are altered in RRMS patients,especially in low-BMI patients,which may contribute to disease progression in these patients.
View Publication
Reference
Thomas KR and Capecchi MR (NOV 1987)
Cell 51 3 503--12
Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells.
We mutated,by gene targeting,the endogenous hypoxanthine phosphoribosyl transferase (HPRT) gene in mouse embryo-derived stem (ES) cells. A specialized construct of the neomycin resistance (neor) gene was introduced into an exon of a cloned fragment of the Hprt gene and used to transfect ES cells. Among the G418r colonies,1/1000 were also resistant to the base analog 6-thioguanine (6-TG). The G418r,6-TGr cells were all shown to be Hprt- as the result of homologous recombination with the exogenous,neor-containing,Hprt sequences. We have compared the gene-targeting efficiencies of two classes of neor-Hprt recombinant vectors: those that replace the endogenous sequence with the exogenous sequence and those that insert the exogenous sequence into the endogenous sequence. The targeting efficiencies of both classes of vectors are strongly dependent upon the extent of homology between exogenous and endogenous sequences. The protocol described herein should be useful for targeting mutations into any gene.
View Publication
Reference
P. A. Szabo et al. (FEB 2017)
Journal of immunology (Baltimore,Md. : 1950) 198 7 2805--2818
Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology.
Toxic shock syndrome (TSS) is caused by staphylococcal and streptococcal superantigens (SAgs) that provoke a swift hyperinflammatory response typified by a cytokine storm. The precipitous decline in the host's clinical status and the lack of targeted therapies for TSS emphasize the need to identify key players of the storm's initial wave. Using a humanized mouse model of TSS and human cells,we herein demonstrate that SAgs elicit in vitro and in vivo IL-17A responses within hours. SAg-triggered human IL-17A production was characterized by remarkably high mRNA stability for this cytokine. A distinct subpopulation of CD4+ effector memory T (TEM) cells that secrete IL-17A,but not IFN-$\gamma$,was responsible for early IL-17A production. We found mouse TEM-17" cells to be enriched within the intestinal epithelium and among lamina propria lymphocytes. Furthermore interfering with IL-17A receptor signaling in human PBMCs attenuated the expression of numerous inflammatory mediators implicated in the TSS-associated cytokine storm. IL-17A receptor blockade also abrogated the secondary effect of SAg-stimulated PBMCs on human dermal fibroblasts as judged by C/EBP $\delta$ expression. Finally the early IL-17A response to SAgs was pathogenic because in vivo neutralization of IL-17A in humanized mice ameliorated hepatic and intestinal damage and reduced mortality. Together our findings identify CD4+ TEM cells as a key effector of TSS and reveal a novel role for IL-17A in TSS immunopathogenesis. Our work thus elucidates a pathogenic as opposed to protective role for IL-17A during Gram-positive bacterial infections. Accordingly the IL-17-IL-17R axis may provide an attractive target for the management of SAg-mediated illnesses."
View Publication
Reference
Tyagi RK et al. (FEB 2017)
Scientific reports 7 41083
Human IDO-competent, long-lived immunoregulatory dendritic cells induced by intracellular pathogen, and their fate in humanized mice.
Targeting of myeloid-dendritic cell receptor DC-SIGN by numerous chronic infectious agents,including Porphyromonas gingivalis,is shown to drive-differentiation of monocytes into dysfunctional mDCs. These mDCs exhibit alterations of their fine-tuned homeostatic function and contribute to dysregulated immune-responses. Here,we utilize P. gingivalis mutant strains to show that pathogen-differentiated mDCs from primary human-monocytes display anti-apoptotic profile,exhibited by elevated phosphorylated-Foxo1,phosphorylated-Akt1,and decreased Bim-expression. This results in an overall inhibition of DC-apoptosis. Direct stimulation of complex component CD40 on DCs leads to activation of Akt1,suggesting CD40 involvement in anti-apoptotic effects observed. Further,these DCs drove dampened CD8(+) T-cell and Th1/Th17 effector-responses while inducing CD25(+)Foxp3(+)CD127(-) Tregs. In vitro Treg induction was mediated by DC expression of indoleamine 2,3-dioxygenase,and was confirmed in IDO-KO mouse model. Pathogen-infected &CMFDA-labeled MoDCs long-lasting survival was confirmed in a huMoDC reconstituted humanized mice. In conclusion,our data implicate PDDCs as an important target for resolution of chronic infection.
View Publication
Reference
Matsuoka AJ et al. (MAR 2017)
Stem cells translational medicine 6 3 923--936
Directed Differentiation of Human Embryonic Stem Cells Toward Placode-Derived Spiral Ganglion-Like Sensory Neurons.
The ability to generate spiral ganglion neurons (SGNs) from stem cells is a necessary prerequisite for development of cell-replacement therapies for sensorineural hearing loss. We present a protocol that directs human embryonic stem cells (hESCs) toward a purified population of otic neuronal progenitors (ONPs) and SGN-like cells. Between 82% and 95% of these cells express SGN molecular markers,they preferentially extend neurites to the cochlear nucleus rather than nonauditory nuclei,and they generate action potentials. The protocol follows an in vitro stepwise recapitulation of developmental events inherent to normal differentiation of hESCs into SGNs,resulting in efficient sequential generation of nonneuronal ectoderm,preplacodal ectoderm,early prosensory ONPs,late ONPs,and cells with cellular and molecular characteristics of human SGNs. We thus describe the sequential signaling pathways that generate the early and later lineage species in the human SGN lineage,thereby better describing key developmental processes. The results indicate that our protocol generates cells that closely replicate the phenotypic characteristics of human SGNs,advancing the process of guiding hESCs to states serving inner-ear cell-replacement therapies and possible next-generation hybrid auditory prostheses. textcopyright Stem Cells Translational Medicine 2017;6:923-936.
View Publication
Reference
Niu H et al. (MAR 2017)
Neuroscience Letters 642 71--76
Recombinant insulin-like growth factor binding protein-4 inhibits proliferation and promotes differentiation of neural progenitor cells
Insulin-like growth factor (IGF) is involved in regulating many processes during neural development,and IGF binding protein-4 (IGFBP4) functions as a modulator of IGF actions or in an IGF-independent manner (e.g.,via inhibiting Wnt/β-catenin signaling). In the present study,neural progenitor cells (NPCs) were isolated from the forebrain of newborn mice to investigate effects of IGFBP4 on the proliferation and differentiation of NPCs. The proliferation of NPCs was evaluated using Cell Counting Kit-8 (CCK-8) after treatment with or without IGFBP4 as well as blockers of IGF-IR and β-catenin. Phosphorylation levels of Akt,Erk1,2 and p38 were analyzed by Western blotting. The differentiation of NPCs was evaluated using immunofluorescence and Western blotting. It was shown that exogenous IGFBP4 significantly inhibited the proliferation of NPCs and it did not induce a more pronounced inhibition of cell proliferation after blockade of IGF-IR but it did after antagonism of β-catenin. Akt phosphorylation was significantly decreased and phosphorylation levels of Erk1,2 and p38 were not significantly changed in IGFBP4-treated NPCs. Excessive IGFBP4 significantly promoted NPCs to differentiate into astrocytes and neurons. These data suggested that exogenous IGFBP4 inhibits proliferation and promotes differentiation of neural progenitor cells mainly through IGF-IR signaling pathway.
View Publication
Reference
Wang F et al. (DEC 2017)
Stem Cell Research & Therapy 8 1 26
CCL11 promotes migration and proliferation of mouse neural progenitor cells
BACKGROUND Neonatal hypoxia-ischemia induces massive brain damage during the perinatal period,resulting in long-term consequences to central nervous system structural and functional maturation. Although neural progenitor cells (NPCs) migrate through the parenchyma and home in to injury sites in the rodent brain,the molecular mechanisms are unknown. We examined the role of chemokines in mediating NPC migration after neonatal hypoxic-ischemic brain injury. METHODS Nine-day-old mice were exposed to a 120-minute hypoxia following unilateral carotid occlusion. Chemokine levels were quantified in mouse brain extract. Migration and proliferation assays were performed using embryonic and infant mouse NPCs. RESULTS The neonatal hypoxic-ischemic brain injury resulted in an ipsilateral lesion,which was extended to the cortical and striatal areas. NPCs migrated toward an injured area,where a marked increase of CC chemokines was detected. In vitro studies showed that incubation of NPCs with recombinant mouse CCL11 promoted migration and proliferation. These effects were partly inhibited by a CCR3 antagonist,SB297006. CONCLUSIONS Our data implicate an important effect of CCL11 for mouse NPCs. The effective activation of NPCs may offer a promising strategy for neuroregeneration in neonatal hypoxic-ischemic brain injury.
View Publication
Reference
Bell S et al. (MAR 2017)
Stem cells translational medicine 6 3 886--896
A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing.
The development of targeted therapeutics for rare neurodevelopmental disorders (NDDs) faces significant challenges due to the scarcity of subjects and the difficulty of obtaining human neural cells. Here,we illustrate a rapid,simple protocol by which patient derived cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using an episomal vector and differentiated into neurons. Using this platform enables patient somatic cells to be converted to physiologically active neurons in less than two months with minimal labor. This platform includes a method to combine somatic cell reprogramming with CRISPR/Cas9 gene editing at single cell resolution,which enables the concurrent development of clonal knockout or knock-in models that can be used as isogenic control lines. This platform reduces the logistical barrier for using iPSC technology,allows for the development of appropriate control lines for use in rare neurodevelopmental disease research,and establishes a fundamental component to targeted therapeutics and precision medicine. Stem Cells Translational Medicine 2017;6:886-896.
View Publication
Reference
Tiburcy M et al. (MAY 2017)
Circulation 135 19 1832--1847
Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.
BACKGROUND Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling,drug screening,and heart repair. Here,we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS We systematically investigated cell composition,matrix,and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological,functional,and transcriptome analyses to benchmark maturation of EHM. RESULTS EHM demonstrated important structural and functional properties of postnatal myocardium,including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction,cardiomyocyte hypertrophy,cardiomyocyte death,and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition,we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined,serum-free conditions.
View Publication
Reference
Duelen R et al. ( 2017)
Stem cells international 2017 4651238
Activin A Modulates CRIPTO-1/HNF4α(+) Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells.
The use of human pluripotent stem cells in basic and translational cardiac research requires efficient differentiation protocols towards cardiomyocytes. In vitro differentiation yields heterogeneous populations of ventricular-,atrial-,and nodal-like cells hindering their potential applications in regenerative therapies. We described the effect of the growth factor Activin A during early human embryonic stem cell fate determination in cardiac differentiation. Addition of high levels of Activin A during embryoid body cardiac differentiation augmented the generation of endoderm derivatives,which in turn promoted cardiomyocyte differentiation. Moreover,a dose-dependent increase in the coreceptor expression of the TGF-β superfamily member CRIPTO-1 was observed in response to Activin A. We hypothesized that interactions between cells derived from meso- and endodermal lineages in embryoid bodies contributed to improved cell maturation in early stages of cardiac differentiation,improving the beating frequency and the percentage of contracting embryoid bodies. Activin A did not seem to affect the properties of cardiomyocytes at later stages of differentiation,measuring action potentials,and intracellular Ca(2+) dynamics. These findings are relevant for improving our understanding on human heart development,and the proposed protocol could be further explored to obtain cardiomyocytes with functional phenotypes,similar to those observed in adult cardiac myocytes.
View Publication