T. J. Gough et al. (Jun 2025)
Animals : an Open Access Journal from MDPI 15 13
Chicken Primordial Germ Cell Surface Marker
This study focuses on improving the identification of chicken primordial germ cells (PGCs),which are vital for genetic transmission and biotechnological applications. Traditional markers like SSEA1 and CVH have limitations—SSEA1 lacks specificity,and CVH is intracellular. A monoclonal antibody was generated by injecting chicken PGCs into mice,producing one that specifically binds to PGCs and decreases with cell differentiation. Mass spectrometry identified its target as the MYH9 protein. The resulting αMYH9 antibody effectively labels PGCs at various developmental stages,offering a valuable tool for isolating viable PGCs and advancing avian genetics,agriculture,and biotechnology.
View Publication
C. Shin et al. (Jul 2025)
Molecular Medicine Reports 32 3
Chimeric PD-1 receptor redirects primary T cells against childhood solid tumors but not to PD-1 ligand-positive CD80-coexpressing cells
The clinical application of T cells engineered with chimeric antigen receptors (CARs) for solid tumors is challenging. A major reason for this involves tumor immune evasion mechanisms,including the high expression of immune checkpoint molecules,such as the programmed death 1 (PD-1) ligands PD-L1 and PD-L2. The inducible expression of PD-L1 in tumors has been observed after CAR-T-cell infusion,even in tumors natively not expressing PD-L1. Furthermore,numerous types of pediatric cancer do not have suitable targets for CAR-T-cell therapy. Therefore,the present study aimed to develop novel CAR-T cells that target PD-L1 and PD-L2,and to evaluate their efficacy against pediatric solid tumors. A novel CAR harboring the immunoglobulin V-set domain of the human PD-1 receptor as an antigen binding site (PD-1 CAR-T) was developed without using a single-chain variable fragment. PD-1 CAR-T cells were successfully manufactured by adding an anti-PD-1 antibody,nivolumab,to the ex vivo expansion culture to prevent fratricide during the manufacturing process due to the inducible expression of PD-L1 in activated human T cells. The expression of PD-L1 (and PD-L2 to a lesser extent) was revealed to be highly upregulated in various pediatric solid tumor cells,which displayed no or very low expression initially,on in vitro exposure to interferon-γ and/or tumor necrosis factor-α,which are cytokines secreted by tumor-infiltrating T cells. Furthermore,PD-1 CAR-T cells exhibited strong cytotoxic activity against pediatric solid tumor cells expressing PD-L1 and PD-L2. Conversely,the effect of PD-1 CAR-T cells was significantly attenuated against PD-L1-positive cells coexpressing CD80,suggesting that the toxicity of PD-1 CAR-T cells to normal immune cells,including antigen presenting cells,can be minimized. In conclusion,PD-1 ligands are promising therapeutic targets for pediatric solid tumors. PD-1 CAR-T cells,either alone or in combination with CAR-T cells with other targets,represent a potential treatment option for solid tumors.
View Publication
Decot V et al. (JAN 2008)
Bio-medical materials and engineering 18 1 Suppl S19--26
Chimerism analysis following nonmyeloablative stem cell transplantation using a new cell subset separation method: Robosep.
Chimerism analysis has become an important tool to manage patients in the peri-transplant period of allogenic stem cell transplantation. During this period,cells of donor and host origin can coexist and increasing proportion of cells of host origin is considered as a recurrence of the underlying disease. We currently performed chimerism analysis on separate peripheral blood cell subsets,lymphocytes and granulocytes. To improve our isolation method,a new automated device from Stem Cell Technology Roboseptrade mark was tested and compared to our manual separation technique. The results obtained on T cell purification showed an improvement of the purity (98.42% with Robosep vs. 92.42% with the manual technique Rosettesep) and of the recovery (63.43% with Robosep and 38% with Rosettesep). The results were significantly improved on patient samples with less than 10% CD3 positive cells (purity: 90% vs. 44.44%; recovery: 73.79% vs. 43.98%). Granulocytes separation was based on CD15 expression. The results showed an improvement of the purity with Robosep (96.90% vs. 86.20% with the manual technique Polymorphprep) but the recovery was impaired (35.2% vs. 52.30%). Using a myeloid (CD66/CD33) cocktail,recovery was improved with the Robosep device (64.04% with the myeloid cocktail vs. 22.4% with the CD15 cocktail). Our data demonstrated that Robosep allowed a performant cell purification in the early period post-transplantation even for populations representing less than 10% of the peripheral blood cells.
View Publication
Aljurf M et al. ( 2016)
Biotechnology research international 2016 8589270
Chimerism Analysis of Cell-Free DNA in Patients Treated with Hematopoietic Stem Cell Transplantation May Predict Early Relapse in Patients with Hematologic Malignancies.
Background. We studied DNA chimerism in cell-free DNA (cfDNA) in patients treated with HSCT. Methods. Chimerism analysis was performed on CD3+ cells,polymorphonuclear (PMN) cells,and cfDNA using 16 small tandem repeat loci. The resulting labeled PCR-products were size-fractionated and quantified. Results. Analyzing samples from 191 patients treated with HSCT for nonneoplastic hematologic disorders demonstrated that the cfDNA chimerism is comparable to that seen in PMN cells. Analyzing leukemia patients (N = 126) showed that,of 84 patients with 100% donor DNA in PMN,16 (19%) had evidence of clinical relapse and textgreater10% recipient DNA in the plasma. Additional 16 patients of the 84 (19%) showed textgreater10% recipient DNA in plasma,but without evidence of relapse. Eight patients had mixed chimerism in granulocytes,lymphocytes,and plasma,but three of these patients had textgreater10% recipient DNA in plasma compared to PMN cells and these three patients had clinical evidence of relapse. The remaining 34 patients showed 100% donor DNA in both PMN and lymphocytes,but cfDNA showed various levels of chimerism. Of these patients 14 (41%) showed laboratory or clinical evidence of relapse and all had textgreater10% recipient DNA in cfDNA. Conclusion. Monitoring patients after HSCT using cfDNA might be more reliable than cellular DNA in predicting early relapse.
View Publication
(Sep 2024)
International Journal of Biological Sciences 20 13
Chimerization of human ESC-derived extraembryonic cells with the mouse blastocyst
It has been reported that human embryonic stem cells (hESCs) treated with BMP4 and inhibitors of TGF? signaling (A83-01) and FGF signaling (PD173074),called BAP,can efficiently differentiate to extraembryonic (ExE) cells in vitro. Due to restricted access to human embryos,it is ethically impossible to test the developmental potential of ExE cells in vivo. Here,we demonstrate that most ExE cells expressed molecular markers for both trophoblasts (TBs) and amniotic cells (ACs). Following intra-uterine transplantation,ExE cells contributed to the mouse placenta. More interestingly,ExE cells could chimerize with the mouse blastocyst as,after injection into the blastocyst,they penetrated its trophectoderm. After implantation of the injected blastocysts into surrogate mice,human cells were found at E14 in placental labyrinth,junction zones,and even near the uterine decidua,expressed placental markers,and secreted human chorionic gonadotropin. Surprisingly,ExE cells also contributed to cartilages of the chimeric embryo with some expressing the chondrogenic marker SOX9,consistent with the mesodermal potential of TBs and ACs in the placenta. Deleting MSX2,a mesodermal determinant,restricted the contribution of ExE cells to the placenta. Thus,we conclude that hESC-derived ExE cells can chimerize with the mouse blastocyst and contribute to both the placenta and cartilages of the chimera consistent with their heteogenious nature. Intra-uterus and intra-blastocyst injections are novel and sensitive methods to study the developmental potential of ExE cells.
View Publication
Da Silva CA et al. (DEC 2010)
American journal of respiratory and critical care medicine 182 12 1482--91
Chitin particles are multifaceted immune adjuvants.
RATIONALE: Chitin is a ubiquitous polysaccharide in fungi,insects,allergens,and parasites that is released at sites of infection. Its role in the generation of tissue inflammation,however,is not fully understood. OBJECTIVES: We hypothesized that chitin is an important adjuvant for adaptive immunity. METHODS: Mice were injected with a solution of ovalbumin and chitin. MEASUREMENTS AND MAIN RESULTS: We used in vivo and ex vivo/in vitro approaches to characterize the ability of chitin fragments to foster adaptive immune responses against ovalbumin and compared these responses to those induced by aluminum hydroxide (alum). In vivo,ovalbumin challenge caused an eosinophil-rich pulmonary inflammatory response,Th2 cytokine elaboration,IgE induction,and mucus metaplasia in mice that had been sensitized with ovalbumin plus chitin or ovalbumin plus alum. Toll-like receptor-2,MyD88,and IL-17A played critical roles in the chitin-induced responses,and MyD88 and IL-17A played critical roles in the alum-induced responses. In vitro,CD4(+) T cells from mice sensitized with ovalbumin plus chitin were incubated with ovalbumin-stimulated bone marrow-derived dendritic cells. In these experiments,CD4(+) T-cell proliferation,IL-5,IL-13,IFN-γ,and IL-17A production were appreciated. Toll-like receptor-2,MyD88,and IL-17A played critical roles in these in vitro adjuvant properties of chitin. TLR-2 was required for cell proliferation,whereas IL-17 and TLR-2 were required for cytokine elaboration. IL-17A also inhibited the generation of adaptive Th1 responses. CONCLUSIONS: These studies demonstrate that chitin is a potent multifaceted adjuvant that induces adaptive Th2,Th1,and Th17 immune responses. They also demonstrate that the adjuvant properties of chitin are mediated by a pathway(s) that involves and is regulated by TLR-2,MyD88,and IL-17A.
View Publication
(May 2024)
Journal for Immunotherapy of Cancer 12 5
CHMP2A regulates broad immune cell-mediated antitumor activity in an immunocompetent in vivo head and neck squamous cell carcinoma model
BackgroundNatural killer (NK) cells are key effector cells of antitumor immunity. However,tumors can acquire resistance programs to escape NK cell-mediated immunosurveillance. Identifying mechanisms that mediate this resistance enables us to define approaches to improve immune-mediate antitumor activity. In previous studies from our group,a genome-wide CRISPR-Cas9 screen identified Charged Multivesicular Body Protein 2A (CHMP2A) as a novel mechanism that mediates tumor intrinsic resistance to NK cell activity.MethodsHere,we use an immunocompetent mouse model to demonstrate that CHMP2A serves as a targetable regulator of not only NK cell-mediated immunity but also other immune cell populations. Using the recently characterized murine 4MOSC model system,a syngeneic,tobacco-signature murine head and neck squamous cell carcinoma model,we deleted mCHMP2A using CRISPR/Cas9-mediated knock-out (KO),following orthotopic transplantation into immunocompetent hosts.ResultsWe found that mCHMP2A KO in 4MOSC1 cells leads to more potent NK-mediated tumor cell killing in vitro in these tumor cells. Moreover,following orthotopic transplantation,KO of mCHMP2A in 4MOSC1 cells,but not the more immune-resistant 4MOSC2 cells enables both T cells and NK cells to better mediate antitumor activity compared with wild type (WT) tumors. However,there was no difference in tumor development between WT and mCHMP2A KO 4MOSC1 or 4MOSC2 tumors when implanted in immunodeficient mice. Mechanistically,we find that mCHMP2A KO 4MOSC1 tumors transplanted into the immunocompetent mice had significantly increased CD4+T cells,CD8+T cells. NK cell,as well as fewer myeloid-derived suppressor cells (MDSC).ConclusionsTogether,these studies demonstrate that CHMP2A is a targetable inhibitor of cellular antitumor immunity.
View Publication
P. H. Mehta et al. (Nov 2024)
Clinical & Translational Immunology 13 12
Choice of activation protocol impacts the yield and quality of CAR T cell product, particularly with older individuals
In clinical chimeric antigen receptor (CAR) T cell therapy,one of the strongest correlates of favorable patient responses is lower levels of differentiation in T cells from the peripheral blood mononuclear cell (PBMC) starting material or the CAR T cell product. T cells from older patients are inherently more differentiated,but we hypothesised that specific activation protocols could be used to limit CAR T cell differentiation during manufacturing,particularly in older patients. We used PBMCs from young (20–30 years old) and older (60+ years old) healthy donors to generate CAR T cells using two activation protocols: soluble anti‐(α) CD3 monoclonal antibody (mAb) vs immune complexes of αCD3 and αCD28 mAbs. Products were assessed for yield,function and differentiation,which was used as a measure of CAR T cell quality. T cells in PBMCs were assessed for CD28 expression and correlative analyses were performed. Older samples generated fewer,more differentiated CAR T cells than young samples,and the αCD3/CD28 mAb protocol exacerbated this,further reducing yield and quality. CD28 expression by T cells correlated with CAR T cell differentiation,but T cell differentiation in PBMC starting material was a stronger correlate of CAR T cell differentiation. Choice of activation protocol can substantially impact on the yield and quality of CAR T cells during manufacturing. This is a key consideration for older patients whose samples already generate a poorer yield and lower quality of CAR T cells.
View Publication
Rong S et al. (JUN 2017)
Journal of lipid research jlr.M077610
Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine.
Sterol regulatory element-binding protein-2 (SREBP-2) activates transcription of all genes needed for cholesterol biosynthesis. To study SREBP-2 function in intestine,we generated a mouse model (Vil-BP2(-/-) ) in which Cre recombinase ablates SREBP-2 in intestinal epithelia. Intestines of Vil-BP2(-/-) mice had reduced expression of genes required for sterol synthesis,in vivo sterol synthesis rates,and epithelial cholesterol contents. On a cholesterol-free diet,they displayed chronic enteropathy with histological abnormalities of both villi and crypts,growth restriction,and reduced survival that was prevented by supplementation of cholesterol in the diet. Likewise,SREBP-2-deficient enteroids required exogenous cholesterol for growth. Blockade of luminal cholesterol uptake into enterocytes with ezetimibe precipitated acutely lethal intestinal damage in Vil-BP2(-/-) mice,highlighting the critical interplay in the small intestine of sterol absorption via NPC1L1 and sterol synthesis via SREBP-2 in sustaining the intestinal mucosa. These data show that small intestine requires SREBP-2 to drive cholesterol synthesis that sustains the intestinal epithelia when uptake of cholesterol from the gut lumen is not available,and provide a unique example of cholesterol auxotrophy expressed in an intact,adult mammal.
View Publication
A. Chakraborty et al. (Aug 2025)
International Journal of Molecular Sciences 26 17
Cholesterol is an essential plasma membrane component,and altered cholesterol metabolism has been linked to cholesterol accumulation in the airways of COPD and cystic fibrosis patients. However,its role in airway epithelial differentiation is not well understood. Tandem mass spectrometry-based proteomic analysis of differentiating primary human bronchial epithelial cells (phBECs) revealed an overall inhibition of the cholesterol biosynthesis pathway. We hypothesized that excess cholesterol impairs the differentiation of phBECs into a fully functional bronchial epithelium. PhBECs were differentiated in the presence of 80 µM cholesterol for 21 days,the main airway cell type populations monitored using qRT-PCR and immunofluorescent stainings,and epithelial barrier integrity was analyzed via transepithelial electrical resistance measurements. Chronic cholesterol exposure led to a significant increase in CC10 + secretory cells at the expense of ciliated cells. Pathway enrichment analysis suggested the tumor protein p53 as a master regulator of genes during normal differentiation of phBECs. Chronic cholesterol exposure drastically impaired the nuclear translocation of p53. Our findings suggest that this inhibition underlies the cholesterol-induced expansion of CC10 + secretory cell populations at the expense of ciliated cells. In conclusion,we identify cholesterol as an important regulator of normal bronchial epithelial cell differentiation through inhibition of p53 nuclear translocation.
View Publication
Krueger WH et al. (JUL 2013)
PLoS ONE 8 7 e67296
Cholesterol-Secreting and Statin-Responsive Hepatocytes from Human ES and iPS Cells to Model Hepatic Involvement in Cardiovascular Health
Hepatocytes play a central and crucial role in cholesterol and lipid homeostasis,and their proper function is of key importance for cardiovascular health. In particular,hepatocytes (especially periportal hepatocytes) endogenously synthesize large amounts of cholesterol and secrete it into circulating blood via apolipoprotein particles. Cholesterol-secreting hepatocytes are also the clinically-relevant cells targeted by statin treatment in vivo. The study of cholesterol homeostasis is largely restricted to the use of animal models and immortalized cell lines that do not recapitulate those key aspects of normal human hepatocyte function that result from genetic variation of individuals within a population. Hepatocyte-like cells (HLCs) derived from human embryonic and induced pluripotent stem cells can provide a cell culture model for the study of cholesterol homeostasis,dyslipidemias,the action of statins and other pharmaceuticals important for cardiovascular health. We have analyzed expression of core components for cholesterol homeostasis in untreated human iPS cells and in response to pravastatin. Here we show the production of differentiated cells resembling periportal hepatocytes from human pluripotent stem cells. These cells express a broad range of apolipoproteins required for secretion and elimination of serum cholesterol,actively secrete cholesterol into the medium,and respond functionally to statin treatment by reduced cholesterol secretion. Our research shows that HLCs derived from human pluripotent cells provide a robust cell culture system for the investigation of the hepatic contribution to human cholesterol homeostasis at both cellular and molecular levels. Importantly,it permits for the first time to also functionally assess the impact of genetic polymorphisms on cholesterol homeostasis. Finally,the system will also be useful for mechanistic studies of heritable dyslipidemias,drug discovery,and investigation of modes of action of cholesterol-modulatory drugs.
View Publication
Chin EWM et al. (JUL 2016)
Neuromolecular medicine 18 3 364--377
Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome.
Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro,we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 (R306C) and MECP2 (1155$$32)) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons,the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input,evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase,an important enzyme in cholinergic signaling,and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models,thereby illustrating the potential for using choline as a nutraceutical to treat RTT.
View Publication