P. A. Morawski et al. (JAN 2017)
Scientific reports 7 40838
Non-pathogenic tissue-resident CD8+ T cells uniquely accumulate in the brains of lupus-prone mice.
Severe lupus often includes psychiatric and neurological sequelae,although the cellular contributors to CNS disease remain poorly defined. Using intravascular staining to discriminate tissue-localized from blood-borne cells,we find substantial accumulation of CD8+ T cells relative to other lymphocytes in brain tissue,which correlates with lupus disease and limited neuropathology. This is in contrast to all other affected organs,where infiltrating CD4+ cells are predominant. Brain-infiltrating CD8+ T cells represent an activated subset of those found in the periphery,having a resident-memory phenotype (CD69+CD122-PD1+CD44+CD62L-) and expressing adhesion molecules (VLA-4+LFA-1+) complementary to activated brain endothelium. Remarkably,infiltrating CD8+ T cells do not cause tissue damage in lupus-prone mice,as genetic ablation of these cells via $\beta$2 m deficiency does not reverse neuropathology,but exacerbates disease both in the brain and globally despite decreased serum IgG levels. Thus,lupus-associated inflammation disrupts the blood-brain barrier in a discriminating way biased in favor of non-pathogenic CD8+ T cells relative to other infiltrating leukocytes,perhaps preventing further tissue damage in such a sensitive organ.
View Publication
Reference
Yao Z et al. (JAN 2017)
Cell stem cell 20 1 120--134
A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.
During human brain development,multiple signaling pathways generate diverse cell types with varied regional identities. Here,we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor,neuronal,and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together,these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders.
View Publication
Reference
Furman D et al. (JAN 2017)
Nature medicine
Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states.
Low-grade,chronic inflammation has been associated with many diseases of aging,but the mechanisms responsible for producing this inflammation remain unclear. Inflammasomes can drive chronic inflammation in the context of an infectious disease or cellular stress,and they trigger the maturation of interleukin-1β (IL-1β). Here we find that the expression of specific inflammasome gene modules stratifies older individuals into two extremes: those with constitutive expression of IL-1β,nucleotide metabolism dysfunction,elevated oxidative stress,high rates of hypertension and arterial stiffness; and those without constitutive expression of IL-1β,who lack these characteristics. Adenine and N(4)-acetylcytidine,nucleotide-derived metabolites that are detectable in the blood of the former group,prime and activate the NLRC4 inflammasome,induce the production of IL-1β,activate platelets and neutrophils and elevate blood pressure in mice. In individuals over 85 years of age,the elevated expression of inflammasome gene modules was associated with all-cause mortality. Thus,targeting inflammasome components may ameliorate chronic inflammation and various other age-associated conditions.
View Publication
Reference
Higelin J et al. ( 2016)
Frontiers in cellular neuroscience 10 290
FUS Mislocalization and Vulnerability to DNA Damage in ALS Patients Derived hiPSCs and Aging Motoneurons.
Mutations within the FUS gene (Fused in Sarcoma) are known to cause Amyotrophic Lateral Sclerosis (ALS),a neurodegenerative disease affecting upper and lower motoneurons. The FUS gene codes for a multifunctional RNA/DNA-binding protein that is primarily localized in the nucleus and is involved in cellular processes such as splicing,translation,mRNA transport and DNA damage response. In this study,we analyzed pathophysiological alterations associated with ALS related FUS mutations (mFUS) in human induced pluripotent stem cells (hiPSCs) and hiPSC derived motoneurons. To that end,we compared cells carrying a mild or severe mFUS in physiological- and/or stress conditions as well as after induced DNA damage. Following hyperosmolar stress or irradiation,mFUS hiPS cells recruited significantly more cytoplasmatic FUS into stress granules accompanied by impaired DNA-damage repair. In motoneurons wild-type FUS was localized in the nucleus but also deposited as small punctae within neurites. In motoneurons expressing mFUS the protein was additionally detected in the cytoplasm and a significantly increased number of large,densely packed FUS positive stress granules were seen along neurites. The amount of FUS mislocalization correlated positively with both the onset of the human disease (the earlier the onset the higher the FUS mislocalization) and the maturation status of the motoneurons. Moreover,even in non-stressed post-mitotic mFUS motoneurons clear signs of DNA-damage could be detected. In summary,we found that the susceptibility to cell stress was higher in mFUS hiPSCs and hiPSC derived motoneurons than in controls and the degree of FUS mislocalization correlated well with the clinical severity of the underlying ALS related mFUS. The accumulation of DNA damage and the cellular response to DNA damage stressors was more pronounced in post-mitotic mFUS motoneurons than in dividing hiPSCs suggesting that mFUS motoneurons accumulate foci of DNA damage,which in turn might be directly linked to neurodegeneration.
View Publication
Reference
Hideshima T et al. (JAN 2017)
Blood
p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma.
p53-related protein kinase (TP53RK,also known as PRPK) is an upstream kinase which phosphorylates (Ser15) and mediates p53 activity. Here we show that TP53RK confers poor prognosis in MM patients; and conversely,that TP53RK knockdown inhibits p53 phosphorylation and triggers multiple myeloma (MM) cell apoptosis,associated with downregulation of c-Myc and E2F-1-mediated upregulation of pro-apoptotic Bim. We further demonstrate that TP53RK downregulation also triggers growth inhibition in p53-deficient (KMS-11) and p53-mutant (U266) MM cell lines,and identify novel downstream targets of TP53RK including ribonucleotide reductase-1,telomerase reverse transcriptase,and cyclin dependent kinase inhibitor 2C (CDKN2C). Our previous studies showed that immunomodulatory drugs (IMiDs) downregulate p21 and trigger apoptosis in wt-p53 MM.1S cells,Importantly we here demonstrate by pull-down,nuclear magnetic resonance spectroscopy,differential scanning fluorimetry,and isothermal titration calorimetry,that IMiDs bind and inhibit TP53RK,with biologic sequelae similar to TP53RK knockdown. Our studies therefore demonstrate that either genetic or pharmacological inhibition of TP53RK triggers MM cell apoptosis via both p53-Myc axis-dependent and -independent pathways,validating TP53RK as a novel therapeutic target in patients with poor prognosis MM.
View Publication
Reference
Jones DM et al. (JAN 2017)
Cell reports 18 2 443--453
Dynamin-2 Stabilizes the HIV-1 Fusion Pore with a Low Oligomeric State.
One of the key research areas surrounding HIV-1 concerns the regulation of the fusion event that occurs between the virus particle and the host cell during entry. Even if it is universally accepted that the large GTPase dynamin-2 is important during HIV-1 entry,its exact role during the first steps of HIV-1 infection is not well characterized. Here,we have utilized a multidisciplinary approach to study the DNM2 role during fusion of HIV-1 in primary resting CD4 T and TZM-bl cells. We have combined advanced light microscopy and functional cell-based assays to experimentally assess the role of dynamin-2 during these processes. Overall,our data suggest that dynamin-2,as a tetramer,might help to establish hemi-fusion and stabilizes the pore during HIV-1 fusion.
View Publication
Reference
S. Kumar et al. (JAN 2017)
Vaccine 35 7 1080--1086
Ex vivo antigen-pulsed PBMCs generate potent and long lasting immunity to infection when administered as a vaccine.
Numerous studies have demonstrated that administration of antigen (Ag)-pulsed dendritic cells (DCs) is an effective strategy for enhancing immunity to tumors and infectious disease organisms. However,the generation and/or isolation of DCs can require substantial time and expense. Therefore,using inactivated F. tularensis (iFt) Ag as a model immunogen,we first sought to determine if DCs could be replaced with peripheral blood mononuclear cells (PBMCs) during the ex-vivo pulse phase and still provide protection against Ft infection. Follow up studies were then conducted using the S. pneumoniae (Sp) vaccine Prevnar {\textregistered}13 as the Ag in the pulse phase followed by immunization and Sp challenge. In both cases,we demonstrate that PBMCs can be used in place of DCs when pulsing with iFt and/or Prevnar {\textregistered}13 ex vivo and re-administering the Ag-pulsed PBMCs as a vaccine. In addition,utilization of the i.n. route for Ag-pulsed PBMC administration is superior to use of the i.v. route in the case of Sp immunization,as well as when compared to direct injection of Prevnar {\textregistered}13 vaccine i.m. or i.n. Furthermore,this PBMC-based vaccine strategy provides a more marked and enduring protective immune response and is also capable of serving as a multi-organism vaccine platform. The potential for this ex-vivo vaccine strategy to provide a simpler,less time consuming,and less expensive approach to DC-based vaccines and vaccination in general is also discussed.
View Publication
Reference
Xu M et al. ( 2017)
Cell & bioscience 7 3
Characterization of tubular liquid crystal structure in embryonic stem cell derived embryoid bodies.
BACKGROUND Massive liquid crystal droplets have been found during embryonic development in more than twenty different tissues and organs,including the liver,brain and kidney. Liquid crystal deposits have also been identified in multiple human pathologies,including vascular disease,liver dysfunction,age-related macular degeneration,and other chronic illnesses. Despite the involvement of liquid crystals in such a large number of human processes,this phenomenon is poorly understood and there are no in vitro systems to further examine the function of liquid crystals in biology. RESULTS We report the presence of tubular birefringent structures in embryoid bodies (EBs) differentiated in culture. These birefringent tubular structures initiate at the EB surface and penetrated the cortex at a variety of depths. Under crossed polarized light,these tubules are seen as a collection of birefringent Maltese crosses and tubules with birefringent walls and a non-birefringent lumen. The fluidity of these birefringent structures under pressure application led to elongation and widening,which was partially recoverable with pressure release. These birefringent structures also displayed heat triggered phase transition from liquid crystal to isotropic status that is partially recoverable with return to ambient temperature. These pressure and temperature triggered changes confirm the birefringent structures as liquid crystals. The first report of liquid crystal so early in development. CONCLUSION The structure of the liquid crystal tubule network we observed distributed throughout the differentiated embryoid bodies may function as a transportation network for nutrients and metabolic waste during EB growth,and act as a precursor to the vascular system. This observation not only reveals the involvement of liquid crystals earlier than previously known,but also provides a method for studying liquid crystals in vitro.
View Publication
Reference
Zhao Z et al. ( 2016)
Frontiers in cellular neuroscience 10 291
Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells.
Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation,two hESCs lines were cultured on mixed feeder cells (MFCs,MEFs: HFFs = 1:1) and HFFs feeder,respectively,and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry,quantitative fluorescent real-time PCR,transmission and scanning electron microscopy,and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However,compared to hESCs line on MFCs feeder,hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2,PITX3,NURR1,and TH genes. In addition,the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion,HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons,but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore,feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines,but also electrophysiological properties of hESCs-derived DA neurons.
View Publication
Reference
Lin Y-R et al. ( 2016)
BioMed research international 2016 2106342
Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis.
Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH textless 7.2) were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine,n = 20) and control (normal saline,n = 20) groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition,cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5) or to culture medium (control). Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group (p textless 0.05). In addition,in pH 6.5 or pH 7.3 HBSS buffer,the expression levels of cell stress (p53) and apoptosis (caspase-3,Bcl-xL) markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR). L-glutamine also increased the beating function of cardiomyocytes,especially at the lower pH level (6.5). More importantly,glutamine decreased cardiomyocyte apoptosis and increased these cells' beating function at a low pH level.
View Publication
Reference
Li Y et al. (MAR 2017)
Cell stem cell 20 3 385--396.e3
Induction of Expansion and Folding in Human Cerebral Organoids.
An expansion of the cerebral neocortex is thought to be the foundation for the unique intellectual abilities of humans. It has been suggested that an increase in the proliferative potential of neural progenitors (NPs) underlies the expansion of the cortex and its convoluted appearance. Here we show that increasing NP proliferation induces expansion and folding in an in vitro model of human corticogenesis. Deletion of PTEN stimulates proliferation and generates significantly larger and substantially folded cerebral organoids. This genetic modification allows sustained cell cycle re-entry,expansion of the progenitor population,and delayed neuronal differentiation,all key features of the developing human cortex. In contrast,Pten deletion in mouse organoids does not lead to folding. Finally,we utilized the expanded cerebral organoids to show that infection with Zika virus impairs cortical growth and folding. Our study provides new insights into the mechanisms regulating the structure and organization of the human cortex.
View Publication
Reference
Kim Y et al. (DEC 2016)
Experimental neurobiology 25 6 296--306
Bipolar Disorder Associated microRNA, miR-1908-5p, Regulates the Expression of Genes Functioning in Neuronal Glutamatergic Synapses.
Bipolar disorder (BD),characterized by recurrent mood swings between depression and mania,is a highly heritable and devastating mental illness with poorly defined pathophysiology. Recent genome-wide molecular genetic studies have identified several protein-coding genes and microRNAs (miRNAs) significantly associated with BD. Notably,some of the proteins expressed from BD-associated genes function in neuronal synapses,suggesting that abnormalities in synaptic function could be one of the key pathogenic mechanisms of BD. In contrast,however,the role of BD-associated miRNAs in disease pathogenesis remains largely unknown,mainly because of a lack of understanding about their target mRNAs and pathways in neurons. To address this problem,in this study,we focused on a recently identified BD-associated but uncharacterized miRNA,miR-1908-5p. We identified and validated its novel target genes including DLGAP4,GRIN1,STX1A,CLSTN1 and GRM4,which all function in neuronal glutamatergic synapses. Moreover,bioinformatic analyses of human brain expression profiles revealed that the expression levels of miR-1908-5p and its synaptic target genes show an inverse-correlation in many brain regions. In our preliminary experiments,the expression of miR-1908-5p was increased after chronic treatment with valproate but not lithium in control human neural progenitor cells. In contrast,it was decreased by valproate in neural progenitor cells derived from dermal fibroblasts of a BD subject. Together,our results provide new insights into the potential role of miR-1908-5p in the pathogenesis of BD and also propose a hypothesis that neuronal synapses could be a key converging pathway of some BD-associated protein-coding genes and miRNAs.
View Publication