Lo Sardo V et al. (JAN 2017)
Nature biotechnology 35 1 69--74
Influence of donor age on induced pluripotent stem cells.
Induced pluripotent stem cells (iPSCs) are being pursued as a source of cells for autologous therapies,many of which will be aimed at aged patients. To explore the impact of age on iPSC quality,we produced iPSCs from blood cells of 16 donors aged 21-100. We find that iPSCs from older donors retain an epigenetic signature of age,which can be reduced through passaging. Clonal expansion via reprogramming also enables the discovery of somatic mutations present in individual donor cells,which are missed by bulk sequencing methods. We show that exomic mutations in iPSCs increase linearly with age,and all iPSC lines analyzed carry at least one gene-disrupting mutation,several of which have been associated with cancer or dysfunction. Unexpectedly,elderly donors (textgreater90 yrs) harbor fewer mutations than predicted,likely due to a contracted blood progenitor pool. These studies establish that donor age is associated with an increased risk of abnormalities in iPSCs and will inform clinical development of reprogramming technology.
View Publication
Reference
Zhu Z et al. (FEB 2017)
Cell stem cell 20 2 274--289.e7
PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs.
The chromatin landscape and cellular metabolism both contribute to cell fate determination,but their interplay remains poorly understood. Using genome-wide siRNA screening,we have identified prohibitin (PHB) as an essential factor in self-renewal of human embryonic stem cells (hESCs). Mechanistically,PHB forms protein complexes with HIRA,a histone H3.3 chaperone,and stabilizes the protein levels of HIRA complex components. Like PHB,HIRA is required for hESC self-renewal. PHB and HIRA act together to control global deposition of histone H3.3 and gene expression in hESCs. Of particular note,PHB and HIRA regulate the chromatin architecture at the promoters of isocitrate dehydrogenase genes to promote transcription and,thus,production of α-ketoglutarate,a key metabolite in the regulation of ESC fate. Our study shows that PHB has an unexpected nuclear role in hESCs that is required for self-renewal and that it acts with HIRA in chromatin organization to link epigenetic organization to a metabolic circuit.
View Publication
Reference
Jalan-Sakrikar N et al. ( 2016)
PloS one 11 12 e0168266
Hedgehog Signaling Overcomes an EZH2-Dependent Epigenetic Barrier to Promote Cholangiocyte Expansion.
BACKGROUND & AIMS Developmental morphogens play an important role in coordinating the ductular reaction and portal fibrosis occurring in the setting of cholangiopathies. However,little is known about how membrane signaling events in ductular reactive cells (DRCs) are transduced into nuclear transcriptional changes to drive cholangiocyte maturation and matrix deposition. Therefore,the aim of this study was to investigate potential mechanistic links between cell signaling events and epigenetic regulators in DRCs. METHODS Using directed differentiation of induced pluripotent stem cells (iPSC),isolated DRCs,and in vivo models,we examine the mechanisms whereby sonic hedgehog (Shh) overcomes an epigenetic barrier in biliary precursors and promotes both cholangiocyte maturation and deposition of fibronectin (FN). RESULTS We demonstrate,for the first time,that Gli1 influences the differentiation state and fibrogenic capacity of iPSC-derived hepatic progenitors and isolated DRCs. We outline a novel pathway wherein Shh-mediated Gli1 binding in key cholangiocyte gene promoters overcomes an epigenetic barrier conferred by the polycomb protein,enhancer of zeste homolog 2 (EZH2) and initiates the transcriptional program of cholangiocyte maturation. We also define previously unknown functional Gli1 binding sites in the promoters of cytokeratin (CK)7,CK19,and FN. Our in vivo results show that EZH2 KO mice fed the choline-deficient,ethanolamine supplemented (CDE) diet have an exaggerated cholangiocyte expansion associated with more robust ductular reaction and increased peri-portal fibrosis. CONCLUSION We conclude that Shh/Gli1 signaling plays an integral role in cholangiocyte maturation in vitro by overcoming an EZH2-dependent epigenetic barrier and this mechanism also promotes biliary expansion in vivo.
View Publication
Reference
Kempf H et al. (DEC 2016)
Nature communications 7 13602
Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells.
In vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates early aspects of human embryogenesis,but the underlying processes are poorly understood and controlled. Here we show that modulating the bulk cell density (BCD: cell number per culture volume) deterministically alters anteroposterior patterning of primitive streak (PS)-like priming. The BCD in conjunction with the chemical WNT pathway activator CHIR99021 results in distinct paracrine microenvironments codifying hPSCs towards definitive endoderm,precardiac or presomitic mesoderm within the first 24 h of differentiation,respectively. Global gene expression and secretome analysis reveals that TGFß superfamily members,antagonist of Nodal signalling LEFTY1 and CER1,are paracrine determinants restricting PS progression. These data result in a tangible model disclosing how hPSC-released factors deflect CHIR99021-induced lineage commitment over time. By demonstrating a decisive,functional role of the BCD,we show its utility as a method to control lineage-specific differentiation. Furthermore,these findings have profound consequences for inter-experimental comparability,reproducibility,bioprocess optimization and scale-up.
View Publication
Reference
Guo D et al. (NOV 2016)
Stem cell research 17 3 670--672
Generation of an Abcc8 heterozygous mutation human embryonic stem cell line using CRISPR/Cas9.
The gene of ATP-binding cassette subfamily C member 8 (Abcc8) is cytogenetically located at 11p15.1 and encodes the sulfonylurea receptor (SUR1). SUR1 is a subunit of ATP-sensitive potassium channel (KAPT) in the β-cell regulating insulin secretion. Mutations of ABCC8 are responsible for congenital hyperinsulinism (CHI). Here we reported that an Abcc8 heterozygous mutant cell line was generated by CRISPR/Cas9 technique with 1bp insertion resulting in abnormal splicing on human embryonic stem cell line H1. The phenotypic characteristics of this cell line reveal defective KATP channel and diazoxide-responsive that provides ideal model for molecular pathology research and drug screening for CHI.
View Publication
Reference
Ouyang Q et al. (NOV 2016)
Stem cell research 17 3 637--639
Human embryonic stem cells derived from abnormal blastocyst donated by polycystic kidney syndrome patient.
Human embryonic stem cell (hESC) line chHES-468 was derived from abnormal blastocyst donated by polycystic kidney syndrome (PKD) patient after preimplantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that chHES-468 cell line carried a heterozygous mutation,c.1052610527delAG,of PKD1. Characteristic tests proved that the chHES-468 cell line presented typical markers of pluripotency and had the capability to form the three germ layers both in vitro and in vivo.
View Publication
Reference
Ouyang Q et al. (NOV 2016)
Stem cell research 17 3 634--636
Generation of human embryonic stem cells from abnormal blastocyst diagnosed with adrenoleukodystrophy.
Human embryonic stem cell (hESC) line chHES-480 was derived from abnormal blastocyst diagnosed with adrenoleukodystrophy (ALD) after preimplantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that chHES-480 cell line carried a hemizygous missense mutation c.1825GtextgreaterA(p.Glu609Lys) of ABCD1 gene. Characteristic tests proved that the chHES-480 cell line presented typical markers of pluripotency and had the capability to form the three germ layers both in vitro and in vivo.
View Publication
Reference
Liu L et al. (OCT 2016)
Stem cell research 17 3 584--586
Generation of human embryonic stem cell line chHES-472 from abnormal embryos diagnosed with Spinocerebellar ataxia type 3.
Spinocerebellar ataxia type3 (SCA3) is an autosomal dominant neurodegenerative disorder. Human embryonic stem cell line chHES-472 was derived from abnormal embryo donated by SCA3 patient after preimplantation genetic diagnosis (PGD) treatment. This cell line had a normal karyotype and retained the disease-causing mutant in ATXN3 gene. Characteristic tests proved that the embryonic stem cell line presented typical markers of pluripotency and had the capability to form the three germlayers in vivo.
View Publication
Reference
Jung-Klawitter S et al. (OCT 2016)
Stem cell research 17 3 580--583
Generation of an iPSC line from a patient with tyrosine hydroxylase (TH) deficiency: TH-1 iPSC.
Fibroblasts from a male patient with compound heterozygous variants in the tyrosine hydroxylase gene (TH; OMIM: 191290; c.[385-CtextgreaterT]; [692-GtextgreaterC]/p.[R129*]; [R231P]),the rate-limiting enzyme for dopamine synthesis,were reprogrammed to iPSCs using episomal reprogramming delivering the reprogramming factors Oct3/4,Sox2,L-Myc,Lin28,Klf4 and p53 shRNA Okita et al. (2011). Pluripotency of TH-1 iPSC was verified by immunohistochemistry and RT-PCR analysis. Cells exhibited a normal karyotype and differentiated spontaneously into the 3 germ layers in vitro. TH-1 iPSC represents the first model system to study the pathomechanism of this rare metabolic disease and provides a useful tool for drug testing.
View Publication
Minimum Transendothelial Electrical Resistance Thresholds for the Study of Small and Large Molecule Drug Transport in a Human in Vitro Blood-Brain Barrier Model.
A human cell-based in vitro model that can accurately predict drug penetration into the brain as well as metrics to assess these in vitro models are valuable for the development of new therapeutics. Here,human induced pluripotent stem cells (hPSCs) are differentiated into a polarized monolayer that express blood-brain barrier (BBB)-specific proteins and have transendothelial electrical resistance (TEER) values greater than 2500 Ωtextperiodcenteredcm(2). By assessing the permeabilities of several known drugs,a benchmarking system to evaluate brain permeability of drugs was established. Furthermore,relationships between TEER and permeability to both small and large molecules were established,demonstrating that different minimum TEER thresholds must be achieved to study the brain transport of these two classes of drugs. This work demonstrates that this hPSC-derived BBB model exhibits an in vivo-like phenotype,and the benchmarks established here are useful for assessing functionality of other in vitro BBB models.
View Publication
Reference
Ady J et al. ( 2016)
Molecular therapy oncolytics 3 16029
Tunneling nanotubes: an alternate route for propagation of the bystander effect following oncolytic viral infection.
Tunneling nanotubes (TNTs) are ultrafine,filamentous actin-based cytoplasmic extensions which form spontaneously to connect cells at short and long-range distances. We have previously described long-range intercellular communication via TNTs connecting mesothelioma cells in vitro and demonstrated TNTs in intact tumors from patients with mesothelioma. Here,we investigate the ability of TNTs to mediate a viral thymidine kinase based bystander effect after oncolytic viral infection and administration of the nucleoside analog ganciclovir. Using confocal microscopy we assessed the ability of TNTs to propagate enhanced green fluorescent protein (eGFP),which is encoded by the herpes simplex virus NV1066,from infected to uninfected recipient cells. Using time-lapse imaging,we observed eGFP expressed in infected cells being transferred via TNTs to noninfected cells; additionally,increasing fluorescent activity in recipient cells indicated cell-to-cell transmission of the eGFP-expressing NV1066 virus had also occurred. TNTs mediated cell death as a form of direct cell-to-cell transfer following viral thymidine kinase mediated activation of ganciclovir,inducing a unique long-range form of the bystander effect through transmission of activated ganciclovir to nonvirus-infected cells. Thus,we provide proof-of-principle demonstration of a previously unknown and alternative mechanism for inducing apoptosis in noninfected recipient cells. The conceptual advance of this work is that TNTs can be harnessed for delivery of oncolytic viruses and of viral thymidine kinase activated drugs to amplify the bystander effect between cancer cells over long distances in stroma-rich tumor microenvironments.
View Publication
Reference
Wang G et al. (JAN 2017)
Nature protocols 12 1 88--103
Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
Genome editing of human induced pluripotent stem cells (hiPSCs) offers unprecedented opportunities for in vitro disease modeling and personalized cell replacement therapy. The introduction of Cas9-directed genome editing has expanded adoption of this approach. However,marker-free genome editing using standard protocols remains inefficient,yielding desired targeted alleles at a rate of ∼1-5%. We developed a protocol based on a doxycycline-inducible Cas9 transgene carried on a piggyBac transposon to enable robust and highly efficient Cas9-directed genome editing,so that a parental line can be expeditiously engineered to harbor many separate mutations. Treatment with doxycycline and transfection with guide RNA (gRNA),donor DNA and piggyBac transposase resulted in efficient,targeted genome editing and concurrent scarless transgene excision. Using this approach,in 7 weeks it is possible to efficiently obtain genome-edited clones with minimal off-target mutagenesis and with indel mutation frequencies of 40-50% and homology-directed repair (HDR) frequencies of 10-20%.
View Publication