G. Myers et al. (Apr 2025)
Nature Communications 16
A genome-wide screen identifies genes required for erythroid differentiation
The complete array of genes required for terminal erythroid differentiation remains unknown. To address this knowledge gap,we perform a genome-scale CRISPR knock-out screen in the human erythroid progenitor cell line HUDEP-2 and validate candidate regulators of erythroid differentiation in a custom secondary screen. Comparison of sgRNA abundance in the CRISPR library,proerythroblasts,and orthochromatic erythroblasts,resulted in the identification of genes that are essential for proerythroblast survival and genes that are required for terminal erythroid differentiation. Among the top genes identified are known regulators of erythropoiesis,underscoring the validity of this screen. Notably,using a Log2 fold change of <−1 and false discovery rate of <0.01,the screen identified 277 genes that are required for terminal erythroid differentiation,including multiple genes not previously nominated through GWAS. NHLRC2,which was previously implicated in hemolytic anemia,was a highly ranked gene. We suggest that anemia due to NHLRC2 mutation results at least in part from a defect in erythroid differentiation. Another highly ranked gene in the screen is VAC14,which we validated for its requirement in erythropoiesis in vitro and in vivo. Thus,data from this CRISPR screen may help classify the underlying mechanisms that contribute to erythroid disorders. Subject terms: Erythropoiesis,CRISPR-Cas9 genome editing,Haematopoietic stem cells
View Publication
Nguyen V et al. ( 2016)
Stem cells international 2016 1346521
A Genomic Study of DNA Alteration Events Caused by Ionizing Radiation in Human Embryonic Stem Cells via Next-Generation Sequencing.
Ionizing radiation (IR) is a known mutagen that is widely employed for medical diagnostic and therapeutic purposes. To study the extent of genetic variations in DNA caused by IR,we used IR-sensitive human embryonic stem cells (hESCs). Four hESC cell lines,H1,H7,H9,and H14,were subjected to IR at 0.2 or 1 Gy dose and then maintained in culture for four days before being harvested for DNA isolation. Irradiation with 1 Gy dose resulted in significant cell death,ranging from 60% to 90% reduction in cell population. Since IR is often implicated as a risk for inducing cancer,a primer pool targeting genomic hotspot" regions that are frequently mutated in human cancer genes was used to generate libraries from irradiated and control samples. Using a semiconductor-based next-generation sequencing approach
View Publication
Rafei M et al. (SEP 2009)
Nature medicine 15 9 1038--45
A granulocyte-macrophage colony-stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties.
We have previously shown that a granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-15 (IL-15) 'fusokine' (GIFT15) exerts immune suppression via aberrant signaling through the IL-15 receptor on lymphomyeloid cells. We show here that ex vivo GIFT15 treatment of mouse splenocytes generates suppressive regulatory cells of B cell ontogeny (hereafter called GIFT15 B(reg) cells). Arising from CD19+ B cells,GIFT15 B(reg) cells express major histocompatibility complex class I (MHCI) and MHCII,surface IgM and IgD,and secrete IL-10,akin to previously described B10 and T2-MZP B(reg) cells,but lose expression of the transcription factor PAX5,coupled to upregulation of CD138 and reciprocal suppression of CD19. Mice with experimental autoimmune encephalomyelitis went into complete remission after intravenous infusion of GIFT15 B(reg) cells paralleled by suppressed neuroinflammation. The clinical effect was abolished when GIFT15 B(reg) cells were derived from mmicroMT (lacking B cells),MHCII-knockout,signal transducer and activator of transcription-6 (STAT-6)-knockout,IL-10-knockout or allogeneic splenocytes,consistent with a pivotal role for MHCII and IL-10 by sygeneic B cells for the observed therapeutic effect. We propose that autologous GIFT15 B(reg) cells may serve as a new treatment for autoimmune ailments.
View Publication
Watkins NA et al. (MAY 2009)
Blood 113 19 e1--9
A HaemAtlas: characterizing gene expression in differentiated human blood cells.
Hematopoiesis is a carefully controlled process that is regulated by complex networks of transcription factors that are,in part,controlled by signals resulting from ligand binding to cell-surface receptors. To further understand hematopoiesis,we have compared gene expression profiles of human erythroblasts,megakaryocytes,B cells,cytotoxic and helper T cells,natural killer cells,granulocytes,and monocytes using whole genome microarrays. A bioinformatics analysis of these data was performed focusing on transcription factors,immunoglobulin superfamily members,and lineage-specific transcripts. We observed that the numbers of lineage-specific genes varies by 2 orders of magnitude,ranging from 5 for cytotoxic T cells to 878 for granulocytes. In addition,we have identified novel coexpression patterns for key transcription factors involved in hematopoiesis (eg,GATA3-GFI1 and GATA2-KLF1). This study represents the most comprehensive analysis of gene expression in hematopoietic cells to date and has identified genes that play key roles in lineage commitment and cell function. The data,which are freely accessible,will be invaluable for future studies on hematopoiesis and the role of specific genes and will also aid the understanding of the recent genome-wide association studies.
View Publication
Mao J et al. (OCT 2015)
Aging Cell 14 5 784--796
A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation
Aberrant neural progenitor cell (NPC) proliferation and self-renewal have been linked to age-related neurodegeneration and neurodegenerative disorders including Alzheimer's disease (AD). Rhizoma Acori tatarinowii is a traditional Chinese herbal medicine against cognitive decline. In this study,we found that the extract of Rhizoma Acori tatarinowii (AT) and its active constituents,asarones,promote NPC proliferation. Oral administration of AT enhanced NPC proliferation and neurogenesis in the hippocampi of adult and aged mice as well as that of transgenic AD model mice. AT and its fractions also enhanced the proliferation of NPCs cultured in vitro. Further analysis identified α-asarone and β-asarone as the two active constituents of AT in promoting neurogenesis. Our mechanistic study revealed that AT and asarones activated extracellular signal-regulated kinase (ERK) but not Akt,two critical kinase cascades for neurogenesis. Consistently,the inhibition of ERK activities effectively blocked the enhancement of NPC proliferation by AT or asarones. Our findings suggest that AT and asarones,which can be orally administrated,could serve as preventive and regenerative therapeutic agents to promote neurogenesis against age-related neurodegeneration and neurodegenerative disorders.
View Publication
Wang J et al. (JUL 2014)
Biochemical and biophysical research communications 450 1 568--74
A heterocyclic molecule kartogenin induces collagen synthesis of human dermal fibroblasts by activating the smad4/smad5 pathway.
Declined production of collagen by fibroblasts is one of the major causes of aging appearance. However,only few of compounds found in cosmetic products are able to directly increase collagen synthesis. A novel small heterocyclic compound called kartogenin (KGN) was found to stimulate collagen synthesis of mesenchymal stem cells (MSCs). So,we hypothesized and tested that if KGN could be applied to stimulate the collagen synthesis of fibroblasts. Human dermal fibroblasts in vitro were treated with various concentrations of KGN,with dimethyl sulfoxide (DMSO) serving as the negative control. Real-time reverse-transcription polymerase chain reaction,Western blot,and immunofluorescence analyses were performed to examine the expression of collagen and transforming growth factor beta (TGF-β) signaling pathway. The production of collagen was also tested in vivo by Masson's trichrome stain and immunohistochemistry in the dermis of mice administrated with KGN. Results showed that without obvious influence on fibroblasts' apoptosis and viability,KGN stimulated type-I collagen synthesis of fibroblasts at the mRNA and protein levels in a time-dependent manner,but KGN did not induce expression of α-skeletal muscle actin (α-sma) or matrix metallopeptidase1 (MMP1),MMP9 in vitro. Smad4/smad5 of the TGF-β signaling pathway was activated by KGN while MAPK signaling pathway remained unchanged. KGN also increased type-I collagen synthesis in the dermis of BALB/C mice. Our results indicated that KGN promoted the type-I collagen synthesis of dermal fibroblasts in vitro and in the dermis of mice through activation of the smad4/smad5 pathway. This molecule could be used in wound healing,tissue engineering of fibroblasts,or aesthetic and reconstructive procedures.
View Publication
(Jul 2025)
Nature Communications 16
A heterozygous CEBPA mutation disrupting the bZIP domain in a RUNX1 and SRSF2 mutational background causes MDS disease progression
Myelodysplastic syndrome disease (MDS) is caused by the successive acquisition of mutations and thus displays a variable risk for progression to AML. Mutations in CEBPA are commonly associated with a high risk of disease progression,but whether they are causative for AML development is unclear. To analyse the molecular basis of disease progression we generated MDS patient-derived induced pluripotent stem cells from a low risk male patient harbouring RUNX1/SRSF2 mutations. This experimental model faithfully recapitulates the patient disease phenotypes upon hematopoietic differentiation. Introduction of a frameshift mutation affecting the C/EBPα bZIP domain in cells from low-risk stages mimicks disease progression by reducing clonogenicity of myeloid cells,blocking granulopoiesis and increasing erythroid progenitor self-renewal capacity. The acquisition of this mutation reshapes the chromatin landscape at distal cis-regulatory regions and promotes changes in cellular composition as observed by single cell RNAseq. Mutant C/EBPα is therefore causative for MDS disease progression. Our work identifies mutant CEBPA as causative for MDS disease progression,providing a new isogenic MDS experimental model for drug screening to improve diagnostic and therapeutic strategies. In Myeloiddysplastic syndromes,CEBPA mutations are linked to disease progression and AML. Here,the authors use somatic reprogramming and genome editing to generate isogenic cell lines from an MDS patient,identifying CEBPA bZIP domain disruption as causative for disease progression.
View Publication
I. Altıntaş et al. (Jul 2025)
Scientific Reports 15
A hexamerization-enhanced, Fc-silenced agonistic CD27 antibody amplifies T-cell effector functions as single agent and in combination with PD-1 blockade
HexaBody-CD27 (GEN1053/BNT313) is an investigational novel agonistic CD27 antibody engineered to enhance T-cell costimulation and promote antitumor immunity. Through the introduction of a hexamerization-enhancing mutation in the IgG Fc domain,HexaBody-CD27 was designed to drive clustering and activation of CD27 via intermolecular Fc:Fc interactions between membrane-bound antibodies,independent of crosslinking by FcγR-bearing cells. HexaBody-CD27 carries an Fc-silencing mutation to prevent T-cell depletion through Fc-mediated effector functions. In vitro,HexaBody-CD27 induced CD27 receptor signaling independent of FcγR-mediated crosslinking in a reporter assay. It also enhanced T-cell proliferation,cytotoxic activity and proinflammatory cytokine secretion in primary human lymphocytes. In contrast to benchmark IgG1 CD27 antibodies,HexaBody-CD27 did not induce phagocytosis of T cells in vitro. HexaBody-CD27 promoted ex vivo tumor infiltrating lymphocyte (TIL) expansion in non-small cell lung cancer (NSCLC) specimens,in particular of CD8 + TILs. The combination of HexaBody-CD27 with an anti-PD-1 antibody enhanced T-cell proliferation,cytokine secretion,and cytotoxic activity in vitro compared to either compound alone. In conclusion,HexaBody-CD27 enhanced T-cell activation and effector functions in an FcγR-crosslinking-independent manner,without inducing T-cell depletion. The immune agonist activity of HexaBody-CD27 was potentiated in combination with PD-1 blockade.
View Publication
A. Singh et al. (Apr 2024)
Scientific Reports 14
A high efficiency precision genome editing method with CRISPR in iPSCs
The use of genetic engineering to generate point mutations in induced pluripotent stem cells (iPSCs) is essential for studying a specific genetic effect in an isogenic background. We demonstrate that a combination of p53 inhibition and pro-survival small molecules achieves a homologous recombination rate higher than 90% using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in human iPSCs. Our protocol reduces the effort and time required to create isogenic lines.
View Publication
Ruiz S et al. (JAN 2011)
Current biology : CB 21 1 45--52
A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity.
Human embryonic stem (hES) cells show an atypical cell-cycle regulation characterized by a high proliferation rate and a short G1 phase. In fact,a shortened G1 phase might protect ES cells from external signals inducing differentiation,as shown for certain stem cells. It has been suggested that self-renewal and pluripotency are intimately linked to cell-cycle regulation in ES cells,although little is known about the overall importance of the cell-cycle machinery in maintaining ES cell identity. An appealing model to address whether the acquisition of stem cell properties is linked to cell-cycle regulation emerged with the ability to generate induced pluripotent stem (iPS) cells by expression of defined transcription factors. Here,we show that the characteristic cell-cycle signature of hES cells is acquired as an early event in cell reprogramming. We demonstrate that induction of cell proliferation increases reprogramming efficiency,whereas cell-cycle arrest inhibits successful reprogramming. Furthermore,we show that cell-cycle arrest is sufficient to drive hES cells toward irreversible differentiation. Our results establish a link that intertwines the mechanisms of cell-cycle control with the mechanisms underlying the acquisition and maintenance of ES cell identity.
View Publication
Maherali N et al. (SEP 2008)
Cell stem cell 3 3 340--5
A high-efficiency system for the generation and study of human induced pluripotent stem cells.
Direct reprogramming of human fibroblasts to a pluripotent state has been achieved through ectopic expression of the transcription factors OCT4,SOX2,and either cMYC and KLF4 or NANOG and LIN28. Little is known,however,about the mechanisms by which reprogramming occurs,which is in part limited by the low efficiency of conversion. To this end,we sought to create a doxycycline-inducible lentiviral system to convert primary human fibroblasts and keratinocytes into human induced pluripotent stem cells (hiPSCs). hiPSCs generated with this system were molecularly and functionally similar to human embryonic stem cells (hESCs),demonstrated by gene expression profiles,DNA methylation status,and differentiation potential. While expression of the viral transgenes was required for several weeks in fibroblasts,we found that 10 days was sufficient for the reprogramming of keratinocytes. Using our inducible system,we developed a strategy to induce hiPSC formation at high frequency. Upon addition of doxycycline to hiPSC-derived differentiated cells,we obtained secondary" hiPSCs at a frequency at least 100-fold greater than the initial conversion. The ability to reprogram cells at high efficiency provides a unique platform to dissect the underlying molecular and biochemical processes that accompany nuclear reprogramming."
View Publication
Moore JC et al. (MAR 2010)
Stem Cell Research 4 2 92--106
A high-resolution molecular-based panel of assays for identification and characterization of human embryonic stem cell lines
Meticulous characterization of human embryonic stem cells (hESC) is critical to their eventual use in cell-based therapies,particularly in view of the diverse methods for derivation and maintenance of these cell lines. However,characterization methods are generally not standardized and many currently used assays are subjective,making dependable and direct comparison of cell lines difficult. In order to address this problem,we selected 10 molecular-based high-resolution assays as components of a panel for characterization of hESC. The selection of the assays was primarily based on their quantitative or objective (rather than subjective) nature. We demonstrate the efficacy of this panel by characterizing 4 hESC lines,derived in two different laboratories using different derivation techniques,as pathogen free,genetically stable,and able to differentiate into derivatives of all three germ layers. Our panel expands and refines a characterization panel previously proposed by the International Stem Cell Initiative and is another step toward standardized hESC characterization and quality control,a crucial element of successful hESC research and clinical translation.
View Publication