Belle K et al. (JAN 2017)
Neuroscience letters 637 201--206
Generation of disease-specific autopsy-confirmed iPSCs lines from postmortem isolated Peripheral Blood Mononuclear Cells
Understanding the molecular mechanisms that underlie neurodegenerative disorders has been hampered by a lack of readily available model systems that replicate the complexity of the human disease. Recent advances in stem cell technology have facilitated the derivation of patient-specific stem cells from a variety of differentiated cell types. These induced pluripotent stem cells (iPSCs) are attractive disease models since they can be grown and differentiated to produce large numbers of disease-relevant cell types. However,most iPSC lines are derived in advance of,and without the benefit of,neuropathological confirmation of the donor - the gold standard for many disease classifications and measurement of disease severity. While others have reported the generation of autopsy-confirmed iPSC lines from patient explants,these methods require outgrowth of cadaver tissue,which require additional time and is often only successul 50% of the time. Here we report the rapid generation of autopsy-confirmed iPSC lines from peripheral blood mononuclear cells (PBMCs) drawn postmortem. Since this approach doesn't require the propagation of previously frozen cadaver tissue,iPSC can be rapidly and efficiently produced from patients with autopsy-confirmed pathology. These matched iPSC-derived patient-specific neurons and postmortem brain tissue will support studies of specific mechanisms that drive the pathogenesis of neurodegenerative diseases.
View Publication
Reference
Hunt NC et al. (FEB 2017)
Acta biomaterialia 49 329--343
3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.
No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is,however,limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel),0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker,MATH5. Furthermore,0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1,CRX,RCVRN,AP2α or VSX2) as determined by qRT-PCR,or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE,but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation,transport and transplantation of neural retina and RPE,and may also enhance formation of other pigmented,neural or epithelial tissue. STATEMENT OF SIGNIFICANCE The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However,derivation of retinal tissue from PSCs using defined media is a lengthy process and often variable between different cell lines. This study indicated that alginate hydrogels enhanced retinal tissue development from PSCs,whereas hyaluronic acid-based hydrogels did not. This is the first study to show that 3D culture with a biomaterial scaffold can improve retinal tissue derivation from PSCs. These findings indicate potential for the clinical application of alginate hydrogels for the derivation and subsequent transplantation retinal tissue. This work may also have implications for the derivation of other pigmented,neural or epithelial tissue.
View Publication
Reference
Antonov SA et al. (SEP 2016)
Doklady biological sciences : proceedings of the Academy of Sciences of the USSR,Biological sciences sections 470 1 244--246
Investigation of the effects of GABA receptor agonists in the differentiation of human induced pluripotent stem cells into dopaminergic neurons.
The influence of GABA receptor agonists on the terminal differentiation in vitro of dopaminergic (DA) neurons derived from IPS cells was investigated. GABA-A agonist muscimol induced transient elevation of intracellular Ca(2+) level ([Ca(2+)] i ) in the investigated cells at days 5 to 21 of differentiation. Differentiation of cells in the presence of muscimol reduced tyrosine hydroxylase expression. Thus,the presence of active GABA-A receptors,associated with phenotype determination via Ca(2+)-signalling was demonstrated in differentiating human DA neurons.
View Publication
Reference
Pereira RC et al. ( 2016)
Frontiers in immunology 7 415
Human Articular Chondrocytes Regulate Immune Response by Affecting Directly T Cell Proliferation and Indirectly Inhibiting Monocyte Differentiation to Professional Antigen-Presenting Cells.
Autologous chondrocyte implantation is the current gold standard cell therapy for cartilage lesions. However,in some instances,the heavily compromised health of the patient can either impair or limit the recovery of the autologous chondrocytes and a satisfactory outcome of the implant. Allogeneic human articular chondrocytes (hAC) could be a good alternative,but the possible immunological incompatibility between recipient and hAC donor should be considered. Herein,we report that allogeneic hAC inhibited T lymphocyte response to antigen-dependent and -independent proliferative stimuli. This effect was maximal when T cells and hAC were in contact and it was not relieved by the addition of exogenous lymphocyte growth factor interleukin (IL)-2. More important,hAC impaired the differentiation of peripheral blood monocytes induced with granulocyte monocyte colony-stimulating factor and IL-4 (Mo) to professional antigen-presenting cells,such as dendritic cells (DC). Indeed,a marked inhibition of the onset of the CD1a expression and an ineffective downregulation of CD14 antigens was observed in Mo-hAC co-cultures. Furthermore,compared to immature or mature DC,Mo from Mo-hAC co-cultures did not trigger an efficacious allo-response. The prostaglandin (PG) E2 present in the Mo-hAC co-culture conditioned media is a putative candidate of the hAC-mediated inhibition of Mo maturation. Altogether,these findings indicate that allogeneic hAC inhibit,rather than trigger,immune response and strongly suggest that an efficient chondrocyte implantation could be possible also in an allogeneic setting.
View Publication
Reference
Azad P et al. (NOV 2016)
The Journal of experimental medicine 213 12 2729--2744
Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge's disease.
In this study,because excessive polycythemia is a predominant trait in some high-altitude dwellers (chronic mountain sickness [CMS] or Monge's disease) but not others living at the same altitude in the Andes,we took advantage of this human experiment of nature and used a combination of induced pluripotent stem cell technology,genomics,and molecular biology in this unique population to understand the molecular basis for hypoxia-induced excessive polycythemia. As compared with sea-level controls and non-CMS subjects who responded to hypoxia by increasing their RBCs modestly or not at all,respectively,CMS cells increased theirs remarkably (up to 60-fold). Although there was a switch from fetal to adult HgbA0 in all populations and a concomitant shift in oxygen binding,we found that CMS cells matured faster and had a higher efficiency and proliferative potential than non-CMS cells. We also established that SENP1 plays a critical role in the differential erythropoietic response of CMS and non-CMS subjects: we can convert the CMS phenotype into that of non-CMS and vice versa by altering SENP1 levels. We also demonstrated that GATA1 is an essential downstream target of SENP1 and that the differential expression and response of GATA1 and Bcl-xL are a key mechanism underlying CMS pathology.
View Publication
Reference
D. P. Dever et al. (NOV 2016)
Nature 539 7629 384--389
CRISPR/Cas9 $\beta$-globin gene targeting in human haematopoietic stem cells.
The $\beta$-haemoglobinopathies,such as sickle cell disease and $\beta$-thalassaemia,are caused by mutations in the $\beta$-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure $\beta$-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably,we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90{\%} targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that,after differentiation into erythrocytes,express adult $\beta$-globin (HbA) messenger RNA,which confirms intact transcriptional regulation of edited HBB alleles. Collectively,these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for $\beta$-haemoglobinopathies.
View Publication
Reference
Sapparapu G et al. (NOV 2016)
Nature
Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice.
Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease,including congenital birth defects during pregnancy(1). To develop candidate therapeutic agents against ZIKV,we isolated a panel of human monoclonal antibodies (mAbs) from subjects with prior ZIKV infection. A subset of mAbs recognized diverse epitopes on the envelope (E) protein and exhibited potently neutralizing activity. One of the most inhibitory mAbs,ZIKV-117,broadly neutralized infection of ZIKV strains corresponding to African,Asian,and American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. mAb treatment markedly reduced tissue pathology,placental and fetal infection,and mortality in mice. Thus,neutralizing human mAbs can protect against maternal-fetal transmission,infection and disease,and reveal important determinants for structure-based rational vaccine design efforts.
View Publication
Reference
Speidel A et al. ( 2016)
PloS one 11 11 e0165949
Leucine-Rich Repeat Kinase 2 Influences Fate Decision of Human Monocytes Differentiated from Induced Pluripotent Stem Cells.
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are strongly associated with familial Parkinson's disease (PD). High expression levels in immune cells suggest a role of LRRK2 in regulating the immune system. In this study,we investigated the effect of the LRRK2 (G2019S) mutation in monocytes,using a human stem cell-derived model expressing LRRK2 at endogenous levels. We discovered alterations in the differentiation pattern of LRRK2 mutant,compared to non-mutant isogenic controls,leading to accelerated monocyte production and a reduction in the non-classical CD14+CD16+ monocyte subpopulation in the LRRK2 mutant cells. LPS-treatment of the iPSC-derived monocytes significantly increased the release of pro-inflammatory cytokines,demonstrating a functional response without revealing any significant differences between the genotypes. Assessment of the migrational capacity of the differentiated monocytes revealed moderate deficits in LRRK2 mutant cells,compared to their respective controls. Our findings indicate a pivotal role of LRRK2 in hematopoietic fate decision,endorsing the involvement of the immune system in the development of PD.
View Publication
Reference
A. S. H. Chan et al. ( 2016)
PloS one 11 11 e0165909
Imprime PGG (Imprime),an intravenously-administered,soluble $\beta$-glucan,has shown compelling efficacy in multiple phase 2 clinical trials with tumor targeting or anti-angiogenic antibodies. Mechanistically,Imprime acts as pathogen-associated molecular pattern (PAMP) directly activating innate immune effector cells,triggering a coordinated anti-cancer immune response. Herein,using whole blood from healthy human subjects,we show that Imprime-induced anti-cancer functionality is dependent on immune complex formation with naturally-occurring,anti-$\beta$ glucan antibodies (ABA). The formation of Imprime-ABA complexes activates complement,primarily via the classical complement pathway,and is opsonized by iC3b. Immune complex binding depends upon Complement Receptor 3 and Fcg Receptor IIa,eliciting phenotypic activation of,and enhanced chemokine production by,neutrophils and monocytes,enabling these effector cells to kill antibody-opsonized tumor cells via the generation of reactive oxygen species and antibody-dependent cellular phagocytosis. Importantly,these innate immune cell changes were not evident in subjects with low ABA levels but could be rescued with exogenous ABA supplementation. Together,these data indicate that pre-existing ABA are essential for Imprime-mediated anti-cancer immune activation and suggest that pre-treatment ABA levels may provide a plausible patient selection biomarker to delineate patients most likely to benefit from Imprime-based therapy.
View Publication
Reference
Liu D et al. (NOV 2016)
Scientific reports 6 36002
IL-25 attenuates rheumatoid arthritis through suppression of Th17 immune responses in an IL-13-dependent manner.
IL-25,a new member of the IL-17 cytokine family,is involved in type 2 immunity initiation and has been associated with the pathogenesis of rheumatoid arthritis (RA). However,its exact role remains unclear. Here,we aimed to analyse IL-25 expression in the serum and synovial fluid of RA patients and evaluated the correlations between serum IL-25 levels,clinical and laboratory values and inflammation cytokines. Additionally,we investigated whether IL-25 can suppress Th1/Th17 responses involved in RA pathogenesis. We further determined whether IL-25 can alleviate collagen-induced arthritis (CIA) development in mice and the underlying mechanisms using in vitro and in vivo experiments. Our results showed that IL-25 was upregulated in the serum and synovial fluid of RA patients. Increased serum IL-25 levels were associated with disease severity and inflammatory response in RA patients. Furthermore,IL-25 inhibited CD4(+) T-cell activation and differentiation into Th17 cells,without affecting Th1 cells in human RA and CIA models. Administration of IL-25 could attenuate CIA development by Th17 suppression in an IL-13-dependent manner. Our findings indicate that IL-25 plays a potent immunosuppressive role in the pathogenesis of RA and CIA by downregulating Th17 cell response,and thus,may be a potential therapeutic agent for RA.
View Publication
Reference
Xu C et al. (NOV 2016)
Nature communications 7 13287
Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling.
Long non-coding RNAs (lncRNAs) are known players in the regulatory circuitry of the self-renewal in human embryonic stem cells (hESCs). However,most hESC-specific lncRNAs remain uncharacterized. Here we demonstrate that growth-arrest-specific transcript 5 (GAS5),a known tumour suppressor and growth arrest-related lncRNA,is highly expressed and directly regulated by pluripotency factors OCT4 and SOX2 in hESCs. Phenotypic analysis shows that GAS5 knockdown significantly impairs hESC self-renewal,but its overexpression significantly promotes hESC self-renewal. Using RNA sequencing and functional analysis,we demonstrate that GAS5 maintains NODAL signalling by protecting NODAL expression from miRNA-mediated degradation. Therefore,we propose that the above pluripotency factors,GAS5 and NODAL form a feed-forward signalling loop that maintains hESC self-renewal. As this regulatory function of GAS5 is stem cell specific,our findings also indicate that the functions of lncRNAs may vary in different cell types due to competing endogenous mechanisms.
View Publication
Reference
Zhu L et al. (OCT 2016)
The Journal of cell biology 215 2 187--202
The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages.
Human induced pluripotent stem cell (hiPSC) utility is limited by variations in the ability of these cells to undergo lineage-specific differentiation. We have undertaken a transcriptional comparison of human embryonic stem cell (hESC) lines and hiPSC lines and have shown that hiPSCs are inferior in their ability to undergo neuroectodermal differentiation. Among the differentially expressed candidates between hESCs and hiPSCs,we identified a mitochondrial protein,CHCHD2,whose expression seems to correlate with neuroectodermal differentiation potential of pluripotent stem cells. We provide evidence that hiPSC variability with respect to CHCHD2 expression and differentiation potential is caused by clonal variation during the reprogramming process and that CHCHD2 primes neuroectodermal differentiation of hESCs and hiPSCs by binding and sequestering SMAD4 to the mitochondria,resulting in suppression of the activity of the TGFβ signaling pathway. Using CHCHD2 as a marker for assessing and comparing the hiPSC clonal and/or line differentiation potential provides a tool for large scale differentiation and hiPSC banking studies.
View Publication