Aumiller V et al. ( 2017)
Scientific reports 7 1 149
Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis.
Extracellular matrix (ECM) composition and stiffness are major driving forces for the development and persistence of fibrotic diseases. Lysyl oxidase (LOX) and LOX-like (LOXL) proteins play crucial roles in ECM remodeling due to their collagen crosslinking and intracellular functions. Here,we systematically investigated LOX/L expression in primary fibroblasts and epithelial cells under fibrotic conditions,Bleomycin (BLM) induced lung fibrosis and in human IPF tissue. Basal expression of all LOX/L family members was detected in epithelial cells and at higher levels in fibroblasts. Various pro-fibrotic stimuli broadly induced LOX/L expression in fibroblasts,whereas specific induction of LOXL2 and partially LOX was observed in epithelial cells. Immunohistochemical analysis of lung tissue from 14 IPF patients and healthy donors revealed strong induction of LOX and LOXL2 in bronchial and alveolar epithelium as well as fibroblastic foci. Using siRNA experiments we observed that LOXL2 and LOXL3 were crucial for fibroblast-to-myofibroblast transition (FMT). As FMT could only be reconstituted with an enzymatically active LOXL2 variant,we conclude that LOXL2 enzymatic function is crucial for fibroblast transdifferentiation. In summary,our study provides a comprehensive analysis of the LOX/L family in fibrotic lung disease and indicates prominent roles for LOXL2/3 in fibroblast activation and LOX/LOXL2 in IPF.
View Publication
M. Kang et al. (Oct 2024)
International Journal of Molecular Sciences 25 19
Comparative Analysis of Serum and Serum-Free Medium Cultured Mesenchymal Stromal Cells for Cartilage Repair
Mesenchymal stromal cells (MSCs) are promising candidates for cartilage repair therapy due to their self-renewal,chondrogenic,and immunomodulatory capacities. It is widely recognized that a shift from fetal bovine serum (FBS)-containing medium toward a fully chemically defined serum-free (SF) medium would be necessary for clinical applications of MSCs to eliminate issues such as xeno-contamination and batch-to-batch variation. However,there is a notable gap in the literature regarding the evaluation of the chondrogenic ability of SF-expanded MSCs (SF-MSCs). In this study,we compared the in vivo regeneration effect of FBS-MSCs and SF-MSCs in a rat osteochondral defect model and found poor cartilage repair outcomes for SF-MSCs. Consequently,a comparative analysis of FBS-MSCs and SF-MSCs expanded using two SF media,MesenCult™-ACF (ACF),and Custom StemPro™ MSC SFM XenoFree (XF) was conducted in vitro. Our results show that SF-expanded MSCs constitute variations in morphology,surface markers,senescence status,differentiation capacity,and senescence/apoptosis status. Highly proliferative MSCs supported by SF medium do not always correlate to their chondrogenic and cartilage repair ability. Prior determination of the SF medium’s ability to support the chondrogenic ability of expanded MSCs is therefore crucial when choosing an SF medium to manufacture MSCs for clinical application in cartilage repair.
View Publication
F. Z. Asumda et al. (Jun 2025)
Frontiers in Cell and Developmental Biology 13 7768
Comparative analysis of small molecule and growth factor-derived human induced pluripotent stem cell-derived hepatocyte-like cells
The growth factor and small molecule protocol are the two primary approaches for generating human induced pluripotent stem cell-derived hepatocyte-like cells (iPSC-HLCs). We compared the efficacy of the growth factor and small molecule protocols across fifteen different human iPSC lines. Morphological assessment,relative quantification of gene expression,protein expression and proteomic studies were carried out. HLCs derived from the growth factor protocol displayed mature hepatocyte morphological features including a raised,polygonal shape with well-defined refractile borders,granular cytoplasm with lipid droplets and/or vacuoles with multiple spherical nuclei or a large centrally located nucleus; significantly elevated hepatocyte gene and protein expression including AFP,HNF4A,ALBUMIN,and proteomic and metabolic features that are more aligned with a mature phenotype. HLCs derived from the small molecule protocol showed a dedifferentiated,proliferative phenotype that is more akin to liver tumor-derived cell lines. These experimental results suggest that HLCs derived from growth factors are better suited for studies of metabolism,biotransformation,and viral infection.
View Publication
Z. Zhang et al. (dec 2022)
Clinical epigenetics 14 1 173
Comparative analysis of the DNA methylation landscape in CD4, CD8, and B memory lineages.
BACKGROUND There is considerable evidence that epigenetic mechanisms and DNA methylation are critical drivers of immune cell lineage differentiation and activation. However,there has been limited coordinated investigation of common epigenetic pathways among cell lineages. Further,it remains unclear if long-lived memory cell subtypes differentiate distinctly by cell lineages. RESULTS We used the Illumina EPIC array to investigate the consistency of DNA methylation in B cell,CD4 T,and CD8 T na{\{i}}ve and memory cells states. In the process of na{\"{i}}ve to memory activation across the three lineages we identify considerable shared epigenetic regulation at the DNA level for immune memory generation. Further in central to effector memory differentiation our analyses revealed specific CpG dinucleotides and genes in CD4 T and CD8 T cells with DNA methylation changes. Finally we identified unique DNA methylation patterns in terminally differentiated effector memory (TEMRA) CD8 T cells compared to other CD8 T memory cell subtypes. CONCLUSIONS Our data suggest that epigenetic alterations are widespread and essential in generating human lymphocyte memory. Unique profiles are involved in methylation changes that accompany memory genesis in the three subtypes of lymphocytes."
View Publication
Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain.
The neurosphere assay can detect and expand neural stem cells (NSCs) and progenitor cells,but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall,we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 mum coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay,the neural colony forming cell assay (N-CFCA),and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis,with the number of neurosphere-forming cells detected in individual 400 mum sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover,the greatest variability occurred in the rostral portion of the lateral ventricles,thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 +/- 276) or colonies (4275 +/- 124) we detected along the neuraxis did not differ significantly,LRC numbers were significantly reduced (1186 +/- 188,7 month chase) in comparison to both total colonies and neurospheres. Moreover,approximately two orders of magnitude fewer NSC-derived colonies (50 +/- 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU+/Ki-67+) or competent to divide (BrdU+/Mcm-2+),and proliferate upon transfer to culture,it is unclear whether this technique selectively detects endogenous NSCs. Overall,caution should be taken with the interpretation and employment of all these techniques.
View Publication
Sokolov M et al. (JUN 2015)
International journal of molecular sciences 16 7 14737--48
Comparative Analysis of Whole-Genome Gene Expression Changes in Cultured Human Embryonic Stem Cells in Response to Low, Clinical Diagnostic Relevant, and High Doses of Ionizing Radiation Exposure.
The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood,generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures,especially genotoxic stresses. However,the risks stemming from exposure to LDIR,particularly within the clinical diagnostic relevant dose range,have not been directly evaluated in human embryonic stem cells (hESCs). Here,we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and,as a reference,high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-,time-,and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs,suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses.
View Publication
Wagner W et al. (NOV 2005)
Experimental hematology 33 11 1402--16
Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood.
OBJECTIVE: Various preparative protocols have been proposed for the acquisition and cultivation of mesenchymal stem cells (MSC). Whereas surface antigen markers have failed to precisely define this population,microarray analysis might provide a better tool for characterization of MSC. METHODS: In this study,we have analyzed global gene expression profiles of human MSC isolated from adipose tissue (AT),from umbilical cord blood (CB),and from bone marrow (BM) under two growth conditions and have compared them to terminally differentiated human fibroblasts (HS68). Profiles were compared using our Human Genome Microarray representing 51.144 different cDNA clones. RESULTS: Cultured with the appropriate conditions,osteogenic and adipogenic differentiation could be confirmed in all MSC preparations but not in fibroblasts. No phenotypic differences were observed by flow cytometry using a panel of 22 surface antigen markers. Whereas MSC derived from different donors using the same culture procedure yielded a consistent and reproducible gene expression profile,many genes were differentially expressed in MSC from different ontogenetic sources or from different culture conditions. Twenty-five genes were overlapping and upregulated in all MSC preparations from AT,CB,and BM as compared to HS68 fibroblasts. These genes included fibronectin,ECM2,glypican-4,ID1,NF1B,HOXA5,and HOXB6. Many genes upregulated in MSC are involved in extracellular matrix,morphogenesis,and development,whereas several inhibitors of the Wnt pathway (DKK1,DKK3,SFRP1) were highly expressed in fibroblasts. CONCLUSION: Our results have provided a foundation for a more reproducible and reliable quality control using genotypic analysis for defining MSC.
View Publication
Qu Q et al. (JUN 1999)
Journal of cellular biochemistry 73 4 500--7
Comparative effects of estrogen and antiestrogens on differentiation of osteoblasts in mouse bone marrow culture.
Estrogens as well as some antiestrogens have been shown to prevent bone loss in postmenopausal women. These compounds seem to inhibit bone resorption,but their anabolic effects have been less explored. In this study,bone marrow cultures were used to compare the effect of 17beta-estradiol (E2),and two triphenylethylene derivatives,tamoxifen (TAM),and FC1271a,and a benzothiophene derivative raloxifene (RAL) on differentiation of osteoblasts. All enhanced osteoblastic differentiation of 21-day cultures as indicated by increased mineralization and bone nodule formation. All,except RAL,stimulated cell proliferation during the first 6 days of the culture. However,in the presence of RAL the content of total protein was increased in 13-day cultures. SDS-PAGE and autoradiography of [14C]-proline labeled proteins revealed elevated level of the newly synthesized collagen type I. The pure antiestrogen ICI 182,780 abolished the increase of the specific activity of alkaline phosphatase by E2,TAM,and FC1271a but not the effect of RAL on protein synthesis. Our results show that E2 as well as TAM,FC1271a,and RAL stimulate bone formation in vitro but the mechanism of the anabolic action of RAL in bone clearly differs from that of E2,TAM,and FC1271a.
View Publication
Smalls-Mantey A et al. ( 2013)
PloS one 8 9 e74858
Comparative efficiency of HIV-1-infected T cell killing by NK cells, monocytes and neutrophils.
HIV-1 infected cells are eliminated in infected individuals by a variety of cellular mechanisms,the best characterized of which are cytotoxic T cell and NK cell-mediated killing. An additional antiviral mechanism is antibody-dependent cellular cytotoxicity. Here we use primary CD4(+) T cells infected with the BaL clone of HIV-1 as target cells and autologous NK cells,monocytes,and neutrophils as effector cells,to quantify the cytotoxicity mediated by the different effectors. This was carried out in the presence or absence of HIV-1-specific antiserum to assess antibody-dependent cellular cytotoxicity. We show that at the same effector to target ratio,NK cells and monocytes mediate similar levels of both antibody-dependent and antibody-independent killing of HIV-1-infected T cells. Neutrophils mediated significant antibody-dependent killing of targets,but were less effective than monocytes or NK cells. These data have implications for acquisition and control of HIV-1 in natural infection and in the context of vaccination.
View Publication
Fè et al. ( 2014)
PloS one 9 3 e91519
Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets.
Glioblastomas (GBMs) are highly aggressive,invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these,cells endowed with stem properties,tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells,termed cancer stem-like cells,have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs),a family of membrane receptors,play a prominent role in cell signaling,cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here,we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs),U-87 MG cells,human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated,138 were retained for comparative studies between the different cell types. At the transcriptomic level,eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.
View Publication
Macaulay IC et al. (APR 2007)
Blood 109 8 3260--9
Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins.
To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified,biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes,a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts,including G6b,G6f,LRRC32,LAT2,and the G protein-coupled receptor SUCNR1,encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins,and flow cytometric analysis confirmed the expression of G6b,G6f,and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b,G6f,and LRRC32 are restricted to the platelet lineage,whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest,because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.
View Publication
Pei Y et al. (MAY 2016)
Brain research 1638 Pt A 57--73
Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes.
Induced pluripotent stem cells (iPSC) and their differentiated derivatives offer a unique source of human primary cells for toxicity screens. Here,we report on the comparative cytotoxicity of 80 compounds (neurotoxicants,developmental neurotoxicants,and environmental compounds) in iPSC as well as isogenic iPSC-derived neural stem cells (NSC),neurons,and astrocytes. All compounds were tested over a 24-h period at 10 and 100$\$,in duplicate,with cytotoxicity measured using the MTT assay. Of the 80 compounds tested,50 induced significant cytotoxicity in at least one cell type; per cell type,32,38,46,and 41 induced significant cytotoxicity in iPSC,NSC,neurons,and astrocytes,respectively. Four compounds (valinomycin,3,3',5,5'-tetrabromobisphenol,deltamethrin,and triphenyl phosphate) were cytotoxic in all four cell types. Retesting these compounds at 1,10,and 100$\$ using the same exposure protocol yielded consistent results as compared with the primary screen. Using rotenone,we extended the testing to seven additional iPSC lines of both genders; no substantial difference in the extent of cytotoxicity was detected among the cell lines. Finally,the cytotoxicity assay was simplified by measuring luciferase activity using lineage-specific luciferase reporter iPSC lines which were generated from the parental iPSC line. This article is part of a Special Issue entitled SI: PSC and the brain.
View Publication