Addo MM et al. (FEB 2003)
Journal of virology 77 3 2081--92
Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load.
Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however,the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects,with a median of 14 individual epitopic regions targeted per person (range,2 to 42),and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/10(6) PBMC (median,4,245) among all study participants. However,the number of epitopic regions targeted,the protein subunits recognized,and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals,with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid,sensitive,specific,and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response,even if a comprehensive pan-genome screening approach is applied.
View Publication
B. Segura-Collar et al. (Jun 2025)
eBioMedicine 118 1
Ageing-dependent low-grade inflammation is a hallmark of central nervous system (CNS) diseases. Vascular and immune abnormalities are implicated in the progression of gliomas and occur in the early stages of Alzheimer's disease (AD); however,the mechanisms by which these alterations manifest in the brain parenchyma remain unclear. Using RNAseq,scRNAseq,bioinformatics tools and a cohort of patients with glioma and Alzheimer's disease for validation of results,we have established an analysis of blood–brain barrier (BBB) dysfunction and neuron loss. A mouse model for glioblastoma pathology was also used that reversed BBB disruption and neuron loss,with the incorporation of the IDH mutation. Finally,we established a characterization of the relevant immune populations with an IHC analysis and transcriptional profile. In this study,molecular analyses of the brain ecosystem revealed that blood–brain barrier dysfunction and neuronal synapse integrity exhibit significant threshold-dependent changes that correlate directly and inversely,respectively,with brain ageing (significant changes at 57 years) and the progression of AD and gliomas (survival of 1525 vs 4084 days for patients with High vs Low BBB dysfunction). Using human samples and mouse models,we identified immunoageing processes characterized by an imbalance between pro-inflammatory and anti-inflammatory signals. This dysregulation promotes the extravasation of monocyte-derived macrophages (85% increase of cells),particularly those with a suppressive phenotype,alongside an increase in inflammatory cytokine levels. Notably,our data show that vascular normalization in a glioma model can reverse neuronal loss and attenuate the aggressiveness of the tumours. Finally,tumour development can be prevented by reactivating the ageing immune system. We propose that the ageing brain represents a common,BBB dysfunction-associated process driving chronic inflammation. This inflammation is regulated by TREM2+/TIM3+ suppressive myeloid cells,which play a central role in disease progression. Our findings suggest that targeting these pathways could offer therapeutic strategies to mitigate CNS pathologies linked to ageing,characterized by toxic neuroinflammation and myeloid dysfunction. This study was funded by ISCIII and co-funded by the European Union.
View Publication
Cavero I et al. (MAY 2016)
Journal of pharmacological and toxicological methods
Comprehensive in vitro Proarrhythmia Assay (CiPA): Pending issues for successful validation and implementation.
INTRODUCTION The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a nonclinical Safety Pharmacology paradigm for discovering electrophysiological mechanisms that are likely to confer proarrhythmic liability to drug candidates intended for human use. TOPICS COVERED Key talks delivered at the 'CiPA on my mind' session,held during the 2015 Annual Meeting of the Safety Pharmacology Society (SPS),are summarized. Issues and potential solutions relating to crucial constituents [e.g.,biological materials (ion channels and pluripotent stem cell-derived cardiomyocytes),study platforms,drug solutions,and data analysis] of CiPA core assays are critically examined. DISCUSSION In order to advance the CiPA paradigm from the current testing and validation stages to a research and regulatory drug development strategy,systematic guidance by CiPA stakeholders is necessary to expedite solutions to pending and newly arising issues. Once a study protocol is proved to yield robust and reproducible results within and across laboratories,it can be implemented as qualified regulatory procedure.
View Publication
Jing J et al. ( 2012)
Molecular cancer therapeutics 11 3 720--729
Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212.
The MEK1 and MEK2 inhibitor GSK1120212 is currently in phase II/III clinical development. To identify predictive biomarkers,sensitivity to GSK1120212 was profiled for 218 solid tumor cell lines and 81 hematologic malignancy cell lines. For solid tumors,RAF/RAS mutation was a strong predictor of sensitivity. Among RAF/RAS mutant lines,co-occurring PIK3CA/PTEN mutations conferred a cytostatic response instead of a cytotoxic response for colon cancer cells that have the biggest representation of the comutations. Among KRAS mutant cell lines,transcriptomics analysis showed that cell lines with an expression pattern suggestive of epithelial-to-mesenchymal transition were less sensitive to GSK1120212. In addition,a proportion of cell lines from certain tissue types not known to carry frequent RAF/RAS mutations also seemed to be sensitive to GSK1120212. Among these were breast cancer cell lines,with triple negative breast cancer cell lines being more sensitive than cell lines from other breast cancer subtypes. We identified a single gene DUSP6,whose expression was associated with sensitivity to GSK1120212 and lack of expression associated with resistance irrelevant of RAF/RAS status. Among hematologic cell lines,acute myeloid leukemia and chronic myeloid leukemia cell lines were particularly sensitive. Overall,this comprehensive predictive biomarker analysis identified additional efficacy biomarkers for GSK1120212 in RAF/RAS mutant solid tumors and expanded the indication for GSK1120212 to patients who could benefit from this therapy despite the RAF/RAS wild-type status of their tumors.
View Publication
G. Y. Lee et al. (Apr 2025)
BMC Research Notes 18 2
Comprehensive single-cell RNA-sequencing study of Tollip deficiency effect in IL-13-stimulated human airway epithelial cells
Toll-interacting protein (Tollip) suppresses excessive pro-inflammatory signaling,but its function in airway epithelial responses to IL-13,a key mediator in allergic diseases,remains unclear. This study investigates Tollip knockdown (TKD) effects in primary human airway epithelial cells using single-cell RNA sequencing,providing the first single-cell analysis of TKD and the first exploring its interaction with IL-13. IL-13 treatment upregulated key genes,including SPDEF,MUC5AC,POSTN,ALOX15,and CCL26,confirming IL-13’s effects and validating our methods. IL-13 reduced TNF-α signaling and epithelial-mesenchymal transition in certain cell types,suggesting a dual role in promoting type 2 inflammation while suppressing Th1-driven inflammation. Tollip deficiency alone significantly amplified TNF-α signaling and inflammatory pathways in goblet,club,and suprabasal cells. Comparisons between TKDIL13 vs IL13 and TKD vs CTR revealed that IL-13 does not substantially alter Tollip deficiency response in most cell types,reinforcing findings in TKD vs CTR. Tollip deficiency alters the response to IL-13 in a cell-type-specific manner,strongly downregulating TNF-α signaling in goblet cells but only weakly in basal and club cells. Tollip deficiency enhances IL-13’s suppression of Th1 inflammatory responses in goblet cells. These novel insights in Tollip-IL-13 interactions offer potential therapeutic targets for asthma and related diseases. The online version contains supplementary material available at 10.1186/s13104-025-07255-7.
View Publication
Billing AM et al. (FEB 2016)
Scientific reports 6 21507
Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers.
Mesenchymal stem cells (MSC) are multipotent cells with great potential in therapy,reflected by more than 500 MSC-based clinical trials registered with the NIH. MSC are derived from multiple tissues but require invasive harvesting and imply donor-to-donor variability. Embryonic stem cell-derived MSC (ESC-MSC) may provide an alternative,but how similar they are to ex vivo MSC is unknown. Here we performed an in depth characterization of human ESC-MSC,comparing them to human bone marrow-derived MSC (BM-MSC) as well as human embryonic stem cells (hESC) by transcriptomics (RNA-seq) and quantitative proteomics (nanoLC-MS/MS using SILAC). Data integration highlighted and validated a central role of vesicle-mediated transport and exosomes in MSC biology and also demonstrated,through enrichment analysis,their versatility and broad application potential. Particular emphasis was placed on comparing profiles between ESC-MSC and BM-MSC and assessing their equivalency. Data presented here shows that differences between ESC-MSC and BM-MSC are similar in magnitude to those reported for MSC of different origin and the former may thus represent an alternative source for therapeutic applications. Finally,we report an unprecedented coverage of MSC CD markers,as well as membrane associated proteins which may benefit immunofluorescence-based applications and contribute to a refined molecular description of MSC.
View Publication
P. Petrov et al. (mar 2019)
Scientific reports 9 1 4155
Computational analysis of the evolutionarily conserved Missing In Metastasis/Metastasis Suppressor 1 gene predicts novel interactions, regulatory regions and transcriptional control.
Missing in Metastasis (MIM),or Metastasis Suppressor 1 (MTSS1),is a highly conserved protein,which links the plasma membrane to the actin cytoskeleton. MIM has been implicated in various cancers,however,its modes of action remain largely enigmatic. Here,we performed an extensive in silico characterisation of MIM to gain better understanding of its function. We detected previously unappreciated functional motifs including adaptor protein (AP) complex interaction site and a C-helix,pointing to a role in endocytosis and regulation of actin dynamics,respectively. We also identified new functional regions,characterised with phosphorylation sites or distinct hydrophilic properties. Strong negative selection during evolution,yielding high conservation of MIM,has been combined with positive selection at key sites. Interestingly,our analysis of intra-molecular co-evolution revealed potential regulatory hotspots that coincided with reduced potentially pathogenic polymorphisms. We explored databases for the mutations and expression levels of MIM in cancer. Experimentally,we focused on chronic lymphocytic leukaemia (CLL),where MIM showed high overall expression,however,downregulation on poor prognosis samples. Finally,we propose strong conservation of MTSS1 also on the transcriptional level and predict novel transcriptional regulators. Our data highlight important targets for future studies on the role of MIM in different tissues and cancers.
View Publication
Marchand M et al. (JAN 2014)
Stem cells translational medicine 3 1 91--97
Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.
Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately,with low efficiencies,from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model,elucidate,and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor,basic fibroblast growth factor,and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media,these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells,respectively. Furthermore,we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.
View Publication
Kim B-Y et al. ( 2016)
Experimental & molecular medicine 48 6 e237
Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC.
Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1,encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it,we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However,the mALK2 leads to inhibitory pluripotency maintenance,or impaired clonogenic potential after single-cell dissociation as an inevitable step,which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus,current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome,and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors,CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617GtextgreaterA. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern,as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time,labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies,which is hampered by inhibitory pluripotency-maintenance requirements,or vulnerability of single-cell-dissociated iPSCs.
View Publication
A. J. Moroi and P. J. Newman (jan 2022)
Journal of thrombosis and haemostasis : JTH 20 1 182--195
Conditional CRISPR-mediated deletion of Lyn kinase enhances differentiation and function of iPSC-derived megakaryocytes.
BACKGROUND Thrombocytopenia leading to life-threatening excessive bleeding can be treated by platelet transfusion. Currently,such treatments are totally dependent on donor-derived platelets. To support future applications in the use of in vitro-derived platelets,we sought to identify genes whose manipulation might improve the efficiency of megakaryocyte production and resulting hemostatic effectiveness. Disruption of Lyn kinase has previously been shown to improve cell survival,megakaryocyte ploidy and TPO-mediated activation in mice,but its role in human megakaryocytes and platelets has not been examined. METHODS To analyze the role of Lyn at defined differentiation stages during human megakaryocyte differentiation,conditional Lyn-deficient cells were generated using CRISPR/Cas9 technology in iPS cells. The efficiency of Lyn-deficient megakaryocytes to differentiate and become activated in response to a range of platelet agonists was analyzed in iPSC-derived megakaryocytes. RESULTS Temporally controlled deletion of Lyn improved the in vitro differentiation of hematopoietic progenitor cells into mature megakaryocytes,as measured by the rate and extent of appearance of CD41+ CD42+ cells. Lyn-deficient megakaryocytes also demonstrated improved hemostatic effectiveness,as reported by their ability to mediate clot formation in rotational thromboelastometry. Finally,Lyn-deficient megakaryocytes produced increased numbers of platelet-like particles (PLP) in vitro. CONCLUSIONS Conditional deletion of Lyn kinase increases the hemostatic effectiveness of megakaryocytes and their progeny as well as improving their yield. Adoption of this system during generation of in vitro-derived platelets may contribute to both their efficiency of production and their ability to support hemostasis.
View Publication
Patzke C et al. (APR 2016)
The Journal of Experimental Medicine 213 4 499--515
Conditional deletion of textlessitextgreaterL1CAMtextless/itextgreater in human neurons impairs both axonal and dendritic arborization and action potential generation
textlessptextgreater Hundreds of textlessitalictextgreaterL1CAMtextless/italictextgreater gene mutations have been shown to be associated with congenital hydrocephalus,severe intellectual disability,aphasia,and motor symptoms. How such mutations impair neuronal function,however,remains unclear. Here,we generated human embryonic stem (ES) cells carrying a conditional textlessitalictextgreaterL1CAMtextless/italictextgreater loss-of-function mutation and produced precisely matching control and textlessitalictextgreaterL1CAMtextless/italictextgreater -deficient neurons from these ES cells. In analyzing two independent conditionally mutant ES cell clones,we found that deletion of textlessitalictextgreaterL1CAMtextless/italictextgreater dramatically impaired axonal elongation and,to a lesser extent,dendritic arborization. Unexpectedly,we also detected an ∼20–50% and ∼20–30% decrease,respectively,in the levels of ankyrinG and ankyrinB protein,and observed that the size and intensity of ankyrinG staining in the axon initial segment was significantly reduced. Overexpression of wild-type L1CAM,but not of the L1CAM point mutants R1166X and S1224L,rescued the decrease in ankyrin levels. Importantly,we found that the textlessitalictextgreaterL1CAMtextless/italictextgreater mutation selectively decreased activity-dependent Na textlesssuptextgreater+textless/suptextgreater -currents,altered neuronal excitability,and caused impairments in action potential (AP) generation. Thus,our results suggest that the clinical presentations of textlessitalictextgreaterL1CAMtextless/italictextgreater mutations in human patients could be accounted for,at least in part,by cell-autonomous changes in the functional development of neurons,such that neurons are unable to develop normal axons and dendrites and to generate normal APs. textless/ptextgreater
View Publication
G. Sette et al. (JUL 2018)
International journal of cancer 143 1 88--99
Conditionally reprogrammed cells (CRC) methodology does not allow the in vitro expansion of patient-derived primary and metastatic lung cancer cells.
Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently,conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However,the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here,we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay,monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly,pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast,brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion,patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions,limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus,CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells,as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells.
View Publication