Dexter TM et al. (JUN 1977)
Journal of cellular physiology 91 3 335--44
Conditions controlling the proliferation of haemopoietic stem cells in vitro.
A liquid culture system is described whereby proliferation of haemopoietic stem cells (CFU-S),production of granulocyte precursor cells (CFU-C),and extensive granulopoiesis can be maintained in vetro for several months. Such cultures consist of adherent and non-adherent populations of cells. The adherent population contains phagocytic mononuclear cells,epithelial" cells�
View Publication
Daniels TR et al. (NOV 2007)
Molecular cancer therapeutics 6 11 2995--3008
Conjugation of an anti transferrin receptor IgG3-avidin fusion protein with biotinylated saporin results in significant enhancement of its cytotoxicity against malignant hematopoietic cells.
We have previously developed an antibody fusion protein composed of a mouse/human chimeric IgG3 specific for the human transferrin receptor genetically fused to avidin (anti-hTfR IgG3-Av) as a universal delivery system for cancer therapy. This fusion protein efficiently delivers biotinylated FITC into cancer cells via TfR-mediated endocytosis. In addition,anti-hTfR IgG3-Av alone exhibits intrinsic cytotoxic activity and interferes with hTfR recycling,leading to the rapid degradation of the TfR and lethal iron deprivation in certain malignant B-cell lines. We now report on the cytotoxic effects of a conjugate composed of anti-hTfR IgG3-Av and biotinylated saporin 6 (b-SO6),a toxin derived from the plant Saponaria officinalis that inhibits protein synthesis. Conjugation of anti-hTfR IgG3-Av with b-SO6 enhances the cytotoxic effect of the fusion protein in sensitive cells and also overcomes the resistance of malignant cells that show low sensitivity to the fusion protein alone. Our results show for the first time that loading anti-hTfR IgG3-Av with a biotinylated toxin enhances the cytotoxicity of the fusion protein alone. These results suggest that anti-hTfR IgG3-Av has great potential as a therapeutic agent for a wide range of applications due to its intrinsic cytotoxic activity plus its ability to deliver biotinylated molecules into cancer cells.
View Publication
Qin J et al. (NOV 2016)
Scientific reports 6 37388
Connexin 32-mediated cell-cell communication is essential for hepatic differentiation from human embryonic stem cells.
Gap junction-mediated cell-cell interactions are highly conserved and play essential roles in cell survival,proliferation,differentiation and patterning. We report that Connexin 32 (Cx32)-mediated gap junctional intercellular communication (GJIC) is necessary for human embryonic stem cell-derived hepatocytes (hESC-Heps) during step-wise hepatic lineage restriction and maturation. Vitamin K2,previously shown to promote Cx32 expression in mature hepatocytes,up-regulated Cx32 expression and GJIC activation during hepatic differentiation and maturation,resulting in significant increases of hepatic markers expression and hepatocyte functions. In contrast,negative Cx32 regulator 2-aminoethoxydiphenyl borate blocked hESC-to-hepatocyte maturation and muted hepatocyte functions through disruption of GJIC activities. Dynamic gap junction organization and internalization are phosphorylation-dependent and the p38 mitogen-activated protein kinases pathway (MAPK) can negatively regulate Cxs through phosphorylation-dependent degradation of Cxs. We found that p38 MAPK inhibitor SB203580 improved maturation of hESC-Heps correlating with up-regulation of Cx32; by contrast,the p38 MAPK activator,anisomycin,blocked hESC-Heps maturation correlating with down-regulation of Cx32. These results suggested that Cx32 is essential for cell-cell interactions that facilitate driving hESCs through hepatic-lineage maturation. Regulators of both Cx32 and other members of its pathways maybe used as a promising approach on regulating hepatic lineage restriction of pluripotent stem cells and optimizing their functional maturation.
View Publication
Schumann P et al. (SEP 2009)
Microvascular research 78 2 180--90
Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo.
Implantation of tissue engineering constructs is a promising technique to reconstruct injured tissue. However,after implantation the nutrition of the constructs is predominantly restricted to vascularization. Since cells possess distinct angiogenic potency,we herein assessed whether scaffold vitalization with different cell types improves scaffold vascularization. 32 male balb/c mice received a dorsal skinfold chamber. Angiogenesis,microhemodynamics,leukocyte-endothelial cell interaction and microvascular permeability induced in the host tissue after implantation of either collagen coated poly (L-lactide-co-glycolide) (PLGA) scaffolds (group 4),additionally seeded with osteoblast-like cells (OLCs,group 1),bone marrow mesenchymal stem cells (bmMSCs,group 2) or a combination of OLCs and bmMSCs (group 3) were analyzed repetitively over 14 days using intravital fluorescence microscopy. Apart from a weak inflammatory response in all groups,vascularization was found distinctly accelerated in vitalized scaffolds,indicated by a significantly increased microvascular density (day 6,group 1: 202+/-15 cm/cm(2),group 2: 202+/-12 cm/cm(2),group 3: 194+/-8 cm/cm(2)),when compared with controls (group 4: 72+/-5 cm/cm(2)). This acceleration was independent from the seeded cell type. Immunohistochemistry revealed in vivo VEGF expression in close vicinity to the seeded OLCs and bmMSCs. Therefore,the observed lack of cell type confined differences in the vascularization process suggests that the accelerated vascularization of vitalized scaffolds is VEGF-related rather than dependent on the potential of bmMSCs to differentiate into specific vascular cells.
View Publication
Bharadwaj R et al. (JUL 2013)
The Journal of neuroscience : the official journal of the Society for Neuroscience 33 29 11839--11851
Conserved Chromosome 2q31 Conformations Are Associated with Transcriptional Regulation of GAD1 GABA Synthesis Enzyme and Altered in Prefrontal Cortex of Subjects with Schizophrenia.
Little is known about chromosomal loopings involving proximal promoter and distal enhancer elements regulating GABAergic gene expression,including changes in schizophrenia and other psychiatric conditions linked to altered inhibition. Here,we map in human chromosome 2q31 the 3D configuration of 200 kb of linear sequence encompassing the GAD1 GABA synthesis enzyme gene locus,and we describe a loop formation involving the GAD1 transcription start site and intergenic noncoding DNA elements facilitating reporter gene expression. The GAD1-TSS(-50kbLoop) was enriched with nucleosomes epigenetically decorated with the transcriptional mark,histone H3 trimethylated at lysine 4,and was weak or absent in skin fibroblasts and pluripotent stem cells compared with neuronal cultures differentiated from them. In the prefrontal cortex of subjects with schizophrenia,GAD1-TSS(-50kbLoop) was decreased compared with controls,in conjunction with downregulated GAD1 expression. We generated transgenic mice expressing Gad2 promoter-driven green fluorescent protein-conjugated histone H2B and confirmed that Gad1-TSS(-55kbLoop),the murine homolog to GAD1-TSS(-50kbLoop),is a chromosomal conformation specific for GABAergic neurons. In primary neuronal culture,Gad1-TSS(-55kbLoop) and Gad1 expression became upregulated when neuronal activity was increased. We conclude that 3D genome architectures,including chromosomal loopings for promoter-enhancer interactions involved in the regulation of GABAergic gene expression,are conserved between the rodent and primate brain,and subject to developmental and activity-dependent regulation,and disordered in some cases with schizophrenia. More broadly,the findings presented here draw a connection between noncoding DNA,spatial genome architecture,and neuronal plasticity in development and disease.
View Publication
Lee M-HH et al. (DEC 2007)
PLoS genetics 3 12 e233
Conserved regulation of MAP kinase expression by PUF RNA-binding proteins
Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work,we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans,FBF/PUF binds regulatory elements in the mpk-1 3' untranslated region (3' UTR) and coprecipitates with mpk-1 mRNA; moreover,mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells,PUM2/PUF binds 3'UTR elements in both Erk2 and p38alpha mRNAs,and PUM2 represses reporter constructs carrying either Erk2 or p38alpha 3' UTRs. Therefore,the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes,where FBF promotes the self-renewal of germline stem cells,and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1,the C. elegans homolog of MAPK phosphatase (MKP),to restrict MAPK activity and prevent apoptosis. In mammals,activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal,and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression.
View Publication
Hendrickson PG et al. (MAY 2017)
Nature genetics
Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons.
To better understand transcriptional regulation during human oogenesis and preimplantation development,we defined stage-specific transcription,which highlighted the cleavage stage as being highly distinctive. Here,we present multiple lines of evidence that a eutherian-specific multicopy retrogene,DUX4,encodes a transcription factor that activates hundreds of endogenous genes (for example,ZSCAN4,KDM4E and PRAMEF-family genes) and retroviral elements (MERVL/HERVL family) that define the cleavage-specific transcriptional programs in humans and mice. Remarkably,mouse Dux expression is both necessary and sufficient to convert mouse embryonic stem cells (mESCs) into 2-cell-embryo-like ('2C-like') cells,measured here by the reactivation of '2C' genes and repeat elements,the loss of POU5F1 (also known as OCT4) protein and chromocenters,and the conversion of the chromatin landscape (as assessed by transposase-accessible chromatin using sequencing (ATAC-seq)) to a state strongly resembling that of mouse 2C embryos. Thus,we propose mouse DUX and human DUX4 as major drivers of the cleavage or 2C state.
View Publication
Senyuk V et al. (JAN 2009)
Cancer research 69 1 262--71
Consistent up-regulation of Stat3 Independently of Jak2 mutations in a new murine model of essential thrombocythemia.
Janus-activated kinase 2 (JAK2) mutations are common in myeloproliferative disorders; however,although they are detected in virtually all polycythemia vera patients,they are found in approximately 50% of essential thrombocythemia (ET) patients,suggesting that converging pathways/abnormalities underlie the onset of ET. Recently,the chromosomal translocation 3;21,leading to the fusion gene AML1/MDS1/EVI1 (AME),was observed in an ET patient. After we forced the expression of AME in the bone marrow (BM) of C57BL/6J mice,all the reconstituted mice died of a disease with symptoms similar to ET with a latency of 8 to 16 months. Peripheral blood smears consistently showed an elevated number of dysplastic platelets with anisocytosis,degranulation,and giant size. Although the AME-positive mice did not harbor Jak2 mutations,the BM of most of them had significantly higher levels of activated Stat3 than the controls. With combined biochemical and biological assays we found that AME binds to the Stat3 promoter leading to its up-regulation. Signal transducers and activators of transcription 3 (STAT3) analysis of a small group of ET patients shows that in about half of the patients,there is STAT3 hyperactivation independently of JAK2 mutations,suggesting that the hyperactivation of STAT3 by JAK2 mutations or promoter activation may be a critical step in development of ET.
View Publication
R. Inciuraite et al. (Mar 2024)
Gut Pathogens 16
Constituents of stable commensal microbiota imply diverse colonic epithelial cell reactivity in patients with ulcerative colitis
Despite extensive research on microbiome alterations in ulcerative colitis (UC),the role of the constituent stable microbiota remains unclear. This study,employing 16S rRNA-gene sequencing,uncovers a persistent microbial imbalance in both active and quiescent UC patients compared to healthy controls. Using co-occurrence and differential abundance analysis,the study highlights microbial constituents,featuring Phocaeicola,Collinsella,Roseburia,Holdemanella,and Bacteroides,that are not affected during the course of UC. Co-cultivation experiments,utilizing commensal Escherichia coli and Phocaeicola vulgatus,were conducted with intestinal epithelial organoids derived from active UC patients and controls. These experiments reveal a tendency for a differential response in tight junction formation and maintenance in colonic epithelial cells,without inducing pathogen recognition and stress responses,offering further insights into the roles of these microorganisms in UC pathogenesis. These experiments also uncover high variation in patients’ response to the same bacteria,which indicate the need for more comprehensive,stratified analyses with an expanded sample size. This study reveals that a substantial part of the gut microbiota remains stable throughout progression of UC. Functional experiments suggest that members of core microbiota – Escherichia coli and Phocaeicola vulgatus – potentially differentially regulate the expression of tight junction gene in the colonic epithelium of UC patients and healthy individuals. The online version contains supplementary material available at 10.1186/s13099-024-00612-0.
View Publication
(Jul 2025)
Journal for Immunotherapy of Cancer 13 7
Constitutive IL-7 signaling promotes CAR-NK cell survival in the solid tumor microenvironment but impairs tumor control
AbstractBackgroundAdoptive transfer of chimeric antigen receptor (CAR)-expressing natural killer (NK) cells has demonstrated success against hematological malignancies. Efficacy against solid tumors has been limited by poor NK cell survival and function in the suppressive tumor microenvironment (TME). To enhance efficacy against solid tumors,stimulatory cytokines have been incorporated into CAR-NK cell therapeutic approaches. However,current cytokine strategies have limitations,including systemic toxicities,exogenous dependencies,and unwanted TME bystander effects. Here,we aimed to overcome these limitations by modifying CAR-NK cells to express a constitutively active interleukin (IL)-7 receptor,termed C7R,capable of providing intrinsic CAR-NK cell activation that does not rely on or produce exogenous signals nor activate bystander cells.MethodsWe examined persistence,antitumor function,and transcriptional profiles of CAR-NK cells coexpressing C7R in a novel tumor immune microenvironment (TiME) co-culture system and against hematologic and solid tumor xenografts in vivo.ResultsPeripheral blood NK cells expressing a CAR directed against the solid tumor antigen GD2 and modified with C7R demonstrated enhanced tumor killing and persistence in vitro compared with CAR-NK cells without cytokine support and similar functions to CAR-NK cells supplemented with recombinant IL-15. C7R.CAR-NK cells exhibited enhanced survival and proliferation within neuroblastoma TiME xenografts in vivo but produced poor long-term tumor control compared with CAR-NK cells supplemented with IL-15. Similar results were seen using C7R-expressing CD19.CAR-NK cells against CD19+leukemia xenografts. Gene expression analysis revealed that chronic signaling via C7R induced a transcriptional signature consistent with intratumor stressed NK cells with blunted effector function. We identified gene candidates associated with chronic cytokine-stressed NK cells that could be targeted to reduce CAR-NK cell stress within the solid TME.ConclusionC7R promoted CAR-NK cell survival in hostile TMEs independent of exogenous signals but resulted in poor antitumor function in vivo. Our data reveals the detrimental role of continuous IL-7 signaling in CAR-NK cells and provides insights into proper application of cytokine signals when attempting to enhance CAR-NK cell antitumor activity.
View Publication
Moogk D et al. (JUL 2016)
Journal of immunology (Baltimore,Md. : 1950) 197 2 644--54
Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets.
CD8(+) T cells develop increased sensitivity following Ag experience,and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that textgreater50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation,compared with textless20% in central memory T cells (TCM). Immediately proximal to Lck signaling,we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore,we observed superior cytotoxic effector function in TEM compared with TCM,and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8(+) TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase,and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM,as well as increased cytotoxic effector function in TCM Collectively,this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity,and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications.
View Publication
Fu L et al. (JUN 2006)
Blood 107 11 4540--8
Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas.
B-lymphocyte stimulator (BLyS),a relatively recently recognized member of the tumor necrosis factor ligand family (TNF),is a potent cell-survival factor expressed in many hematopoietic cells. BLyS binds to 3 TNF-R receptors,TACI,BCMA,BAFF-R,to regulate B-cell survival,differentiation,and proliferation. The mechanisms involved in BLYS gene expression and regulation are still incompletely understood. In this study,we examined BLYS gene expression,function,and regulation in B-cell non-Hodgkin lymphoma (NHL-B) cells. Our studies indicate that BLyS is constitutively expressed in aggressive NHL-B cells,including large B-cell lymphoma (LBCL) and mantle cell lymphoma (MCL),playing an important role in the survival and proliferation of malignant B cells. We found that 2 important transcription factors,NF-kappaB and NFAT,are involved in regulating BLyS expression through at least one NF-kappaB and 2 NFAT binding sites in the BLYS promoter. We also provide evidence suggesting that the constitutive activation of NF-kappaB and BLyS in NHL-B cells forms a positive feedback loop associated with lymphoma cell survival and proliferation. Our findings indicate that constitutive NF-kappaB and NFAT activations are crucial transcriptional regulators of the BLyS survival pathway in malignant B cells that could be therapeutic targets in aggressive NHL-B.
View Publication