Chorny A et al. (SEP 2016)
The Journal of experimental medicine
The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells.
Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study,we found binding of PTX3 to splenic marginal zone (MZ) B cells,an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation-related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides,which decreased in PTX3-deficient mice and humans. In addition,PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell-independent and T cell-dependent signals. Thus,PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens.
View Publication
Reference
Pettinato G et al. (SEP 2016)
Scientific reports 6 32888
Scalable Differentiation of Human iPSCs in a Multicellular Spheroid-based 3D Culture into Hepatocyte-like Cells through Direct Wnt/β-catenin Pathway Inhibition.
Treatment of acute liver failure by cell transplantation is hindered by a shortage of human hepatocytes. Current protocols for hepatic differentiation of human induced pluripotent stem cells (hiPSCs) result in low yields,cellular heterogeneity,and limited scalability. In the present study,we have developed a novel multicellular spheroid-based hepatic differentiation protocol starting from embryoid bodies of hiPSCs (hiPSC-EBs) for robust mass production of human hepatocyte-like cells (HLCs) using two novel inhibitors of the Wnt pathway. The resultant hiPSC-EB-HLCs expressed liver-specific genes,secreted hepatic proteins such as Albumin,Alpha Fetoprotein,and Fibrinogen,metabolized ammonia,and displayed cytochrome P450 activities and functional activities typical of mature primary hepatocytes,such as LDL storage and uptake,ICG uptake and release,and glycogen storage. Cell transplantation of hiPSC-EB-HLC in a rat model of acute liver failure significantly prolonged the mean survival time and resolved the liver injury when compared to the no-transplantation control animals. The transplanted hiPSC-EB-HLCs secreted human albumin into the host plasma throughout the examination period (2 weeks). Transplantation successfully bridged the animals through the critical period for survival after acute liver failure,providing promising clues of integration and full in vivo functionality of these cells after treatment with WIF-1 and DKK-1.
View Publication
Reference
Polak U et al. (OCT 2016)
Stem cells and development
Alleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming.
Friedreich's ataxia (FRDA) is the most common autosomal recessive ataxia. This severe neurodegenerative disease is caused by an expansion of guanine-adenine-adenine (GAA) repeats located in the first intron of the frataxin (FXN) gene,which represses its transcription. Although transcriptional silencing is associated with heterochromatin-like changes in the vicinity of the expanded GAAs,the exact mechanism and pathways involved in transcriptional inhibition are largely unknown. As major remodeling of the epigenome is associated with somatic cell reprogramming,modulating chromatin modification pathways during the cellular transition from a somatic to a pluripotent state is likely to generate permanent changes to the epigenetic landscape. We hypothesize that the epigenetic modifications in the vicinity of the GAA repeats can be reversed by pharmacological modulation during somatic cell reprogramming. We reprogrammed FRDA fibroblasts into induced pluripotent stem cells (iPSCs) in the presence of various small molecules that target DNA methylation and histone acetylation and methylation. Treatment of FRDA iPSCs with two compounds,sodium butyrate (NaB) and Parnate,led to an increase in FXN expression and correction of repressive marks at the FXN locus,which persisted for several passages. However,prolonged culture of the epigenetically modified FRDA iPSCs led to progressive expansions of the GAA repeats and a corresponding decrease in FXN expression. Furthermore,we uncovered that differentiation of these iPSCs into neurons also results in resilencing of the FXN gene. Taken together,these results demonstrate that transcriptional repression caused by long GAA repeat tracts can be partially or transiently reversed by altering particular epigenetic modifications,thus revealing possibilities for detailed analyses of silencing mechanism and development of new therapeutic approaches for FRDA.
View Publication
Reference
Zagoura D et al. (SEP 2016)
Neurochemistry international
Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells.
Human induced pluripotent stem cells (hiPSCs) are considered as a powerful tool for drug and chemical screening and development of new in vitro testing strategies in the field of toxicology,including neurotoxicity evaluation. These cells are able to expand and efficiently differentiate into different types of neuronal and glial cells as well as peripheral neurons. These human cells-based neuronal models serve as test systems for mechanistic studies on different pathways involved in neurotoxicity. One of the well-known mechanisms that are activated by chemically-induced oxidative stress is the Nrf2 signaling pathway. Therefore,in the current study,we evaluated whether Nrf2 signaling machinery is expressed in human induced pluripotent stem cells (hiPSCs)-derived mixed neuronal/glial culture and if so whether it becomes activated by rotenone-induced oxidative stress mediated by complex I inhibition of mitochondrial respiration. Rotenone was found to induce the activation of Nrf2 signaling particularly at the highest tested concentration (100 nM),as shown by Nrf2 nuclear translocation and the up-regulation of the Nrf2-downstream antioxidant enzymes,NQO1 and SRXN1. Interestingly,exposure to rotenone also increased the number of astroglial cells in which Nrf2 activation may play an important role in neuroprotection. Moreover,rotenone caused cell death of dopaminergic neurons since a decreased percentage of tyrosine hydroxylase (TH(+)) cells was observed. The obtained results suggest that hiPSC-derived mixed neuronal/glial culture could be a valuable in vitro human model for the establishment of neuronal specific assays in order to link Nrf2 pathway activation (biomarker of oxidative stress) with additional neuronal specific readouts that could be applied to in vitro neurotoxicity evaluation.
View Publication
Reference
Zhang L et al. (NOV 2016)
Neuroscience 337 88--97
CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells.
G protein-coupled receptors (GPCRs) are involved in many fundamental cellular responses such as growth,death,movement,transcription and excitation. Their roles in human stem cell neural specialization are not well understood. In this study,we aimed to identify GPCRs that may play a role in the differentiation of human embryonic stem cells (hESCs) to neural stem cells (NSCs). Using a feeder-free hESC neural differentiation protocol,we found that the expression of several chemokine receptors changed dramatically during the hESC/NSC transition. Especially,the expression of CXCR4 increased approximately 50 folds in NSCs compared to the original hESCs. CXCR4 agonist SDF-1 promoted,whereas the antagonist AMD3100 delayed the neural induction process. In consistence with antagonizing CXCR4,knockdown of CXCR4 in hESCs also blocked the neural induction and cells with reduced CXCR4 were rarely positive for Nestin and Sox1-staining. Taken together,our results suggest that CXCR4 is involved in the neural induction process of hESC and it might be considered as a target to facilitate NSC production from hESCs in regenerative medicine.
View Publication
Reference
Wang L et al. (DEC 2016)
Materials science & engineering. C,Materials for biological applications 69 1125--1136
Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.
Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs),dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However,there has been no report comparing hDPSCs,hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering,and (2) compare cell viability,proliferation and osteogenic differentiation of hDPSCs,hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs),and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs,BM-hiPSC-MSCs,and hBMSCs exhibited high alkaline phosphatase,runt-related transcription factor,collagen I,and osteocalcin gene expressions. Cell-synthesized minerals increased with time (ptextless0.05),with no significant difference among hDPSCs,BM-hiPSC-MSCs and hBMSCs (ptextgreater0.1). Mineralization by hDPSCs,BM-hiPSC-MSCs,and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion,hDPSCs,BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however,FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental,craniofacial and orthopedic applications.
View Publication
Reference
Tian M et al. (SEP 2016)
Cell 166 6 1471--1484.e18
Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires.
The design of immunogens that elicit broadly reactive neutralizing antibodies (bnAbs) has been a major obstacle to HIV-1 vaccine development. One approach to assess potential immunogens is to use mice expressing precursors of human bnAbs as vaccination models. The bnAbs of the VRC01-class derive from the IGHV1-2 immunoglobulin heavy chain and neutralize a wide spectrum of HIV-1 strains via targeting the CD4 binding site of the envelope glycoprotein gp120. We now describe a mouse vaccination model that allows a germline human IGHV1-2(∗)02 segment to undergo normal V(D)J recombination and,thereby,leads to the generation of peripheral B cells that express a highly diverse repertoire of VRC01-related receptors. When sequentially immunized with modified gp120 glycoproteins designed to engage VRC01 germline and intermediate antibodies,IGHV1-2(∗)02-rearranging mice,which also express a VRC01-antibody precursor light chain,can support the affinity maturation of VRC01 precursor antibodies into HIV-neutralizing antibody lineages.
View Publication
Reference
Freyer N et al. ( 2016)
BioResearch open access 5 1 235--48
Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor.
The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine,pharmacological drug screening,and toxicity testing. However,full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study,we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 10(6) hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A,Wnt3a,and sodium butyrate to the culture medium. For further maturation,hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP),a marker for DE,was significantly (p textless 0.05) higher in 2D cultures,while secretion of albumin,a typical characteristic for mature hepatocytes,was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2,CYP2B6,and CYP3A4 in both groups,although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p textless 0.05) higher in 3D bioreactors compared with 2D cultures,which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin,cytokeratin 18 (CK18),and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition,cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems in stem cell differentiation approaches for improved formation of differentiated tissue structures.
View Publication
Reference
Uhl B et al. (SEP 2016)
Blood
Aged neutrophils contribute to the first line of defense in the acute inflammatory response.
Under steady-state conditions,aged neutrophils are removed from the circulation in bone marrow,liver,and spleen thereby maintaining myeloid cell homeostasis. The fate of these aged immune cells under inflammatory conditions,however,remains largely obscure. Here,we demonstrate that in the acute inflammatory response during endotoxemia aged neutrophils cease returning to the bone marrow and instead rapidly migrate to the site of inflammation. Having arrived in inflamed tissue,aged neutrophils were found to exhibit a higher phagocytic activity as compared to the subsequently recruited non-aged neutrophils. This distinct behavior of aged neutrophils under inflammatory conditions is dependent on specific age-related changes in their molecular repertoire that enable these 'experienced' immune cells to instantly translate inflammatory signals into immune responses. In particular,aged neutrophils engage toll-like receptor-4- and p38 mitogen-activated protein kinases-dependent pathways to induce conformational changes in β2 integrins which allow these phagocytes to effectively accomplish their mission in the front line of the inflammatory response. Hence,ageing in the circulation might represent a critical process for neutrophils that enables these immune cells to properly unfold their functional properties for host defense.
View Publication
Reference
Gao L et al. ( 2016)
PloS one 11 9 e0162149
31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy.
Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method,this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM,n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI,n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch,n = 6); and 4) Cell group,hiPSCs-cardiomyocytes,-endothelial cells,and -smooth muscle cells (2 million,each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch,n = 5). At 4 weeks,the creatine phosphate (PCr)/ATP ratio,CK forward flux rate (Flux PCr→ATP),and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover,the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced,but recovered in response to cell treatment. Thus,cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling,which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling.
View Publication
Reference
Bielawski KS et al. (SEP 2016)
Tissue engineering. Part C,Methods
Real-Time Force and Frequency Analysis of Engineered Human Heart Tissue Derived from Induced Pluripotent Stem Cells Using Magnetic Sensing.
Engineered heart tissues made from human pluripotent stem cell-derived cardiomyocytes have been used for modeling cardiac pathologies,screening new therapeutics,and providing replacement cardiac tissue. Current methods measure the functional performance of engineered heart tissue by their twitch force and beating frequency,typically obtained by optical measurements. In this article,we describe a novel method for assessing twitch force and beating frequency of engineered heart tissue using magnetic field sensing,which enables multiple tissues to be measured simultaneously. The tissues are formed as thin structures suspended between two silicone posts,where one post is rigid and another is flexible and contains an embedded magnet. When the tissue contracts it causes the flexible post to bend in proportion to its twitch force. We measured the bending of the post using giant magnetoresistive (GMR) sensors located underneath a 24-well plate containing the tissues. We validated the accuracy of the readings from the GMR sensors against optical measurements. We demonstrated the utility and sensitivity of our approach by testing the effects of three concentrations of isoproterenol and verapamil on twitch force and beating frequency in real-time,parallel experiments. This system should be scalable beyond the 24-well format,enabling greater automation in assessing the contractile function of cardiomyocytes in a tissue-engineered environment.
View Publication
Reference
Sugimine Y et al. (SEP 2016)
International journal of hematology
A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges.
Various systems for differentiating hematopoietic cells from human pluripotent stem cells (PSCs) have been developed,although none have been fully optimized. In this report,we describe the development of a novel three-dimensional system for differentiating hematopoietic cells from PSCs using collagen sponges (CSs) reinforced with poly(ethylene terephthalate) fibers as a scaffold. PSCs seeded onto CSs were differentiated in a stepwise manner with appropriate cytokines under serum-free and feeder-free conditions. This process yielded several lineages of floating hematopoietic cells repeatedly for more than 1 month. On immunohistochemical staining,we detected CD34+ cells and CD45+ cells in the surface and cavities of the CS. Taking advantage of the portability of this system,we were able to culture multiple CSs together floating in medium,making it possible to harvest large numbers of hematopoietic cells repeatedly. Given these findings,we suggest that this novel three-dimensional culture system may be useful in the large-scale culture of PSC-derived hematopoietic cells.
View Publication