Kanninen LK et al. (JUN 2016)
Biomaterials 103 86--100
Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells
Human pluripotent stem cells (hPSCs) have gained a solid foothold in basic research and drug industry as they can be used in??vitro to study human development and have potential to offer limitless supply of various somatic cell types needed in drug development. Although the hepatic differentiation of hPSCs has been extensively studied,only a little attention has been paid to the role of the extracellular matrix. In this study we used laminin-511,laminin-521,and fibronectin,found in human liver progenitor cells,as culture matrices for hPSC-derived definitive endoderm cells. We observed that laminin-511 and laminin-521 either alone or in combination support the hepatic specification and that fibronectin is not a vital matrix protein for the hPSC-derived definitive endoderm cells. The expression of the laminin-511/521-specific integrins increased during the definitive endoderm induction and hepatic specification. The hepatic cells differentiated on laminin matrices showed the upregulation of liver-specific markers both at mRNA and protein levels,secreted human albumin,stored glycogen,and exhibited cytochrome P450 enzyme activity and inducibility. Altogether,we found that laminin-511 and laminin-521 can be used as stage-specific matrices to guide the hepatic specification of hPSC-derived definitive endoderm cells.
View Publication
Reference
Reibetanz U et al. (JUN 2016)
ACS Nano 10 7 6563--6573
Influence of Growth Characteristics of Induced Pluripotent Stem Cells on Their Uptake Efficiency for Layer-by-Layer Microcarriers
Induced pluripotent stem cells (iPSCs) have the ability to differentiate in any specialized somatic cell type,which makes them an attractive tool for a wide variety of scientific approaches,including regenerative medicine. However,their pluripotent state and their growth in compact colonies render them difficult to access and,therefore,restrict delivery of specific agents for cell manipulation. Thus,our investigation focus was set on the evaluation of the capability of Layer-by-Layer (LbL) designed microcarriers to serve as a potential drug delivery system to iPSCs,as they offer several appealing advantages. Most notably,these carriers allow for the transport of active agents in a protected environment and for a rather specific delivery through surface modifications. As we could show,charge and mode of LbL carrier application as well as the size of the iPSC colonies determine the interaction with and the uptake rate by iPSCs. None of the examined conditions had an influence on iPSC colony properties such as colony morphology and size or maintenance of pluripotent properties. An overall interaction rate of LbL carriers with iPSCs of up to 20 % was achieved. Those data emphasize the applicability of LbL carriers for stem cell research. Additionally,the potential use of LbL carriers as a promising delivery tool for iPSCs was contrasted to viral particles and liposomes. The identified differences among those delivery tools have substantiated our major conclusion that LbL carrier uptake rate is influenced by characteristic features of the iPSC colonies (most notably colony size) in addition to their surface charges.
View Publication
Reference
Mangalam AK et al. (JUN 2016)
Journal of immunology (Baltimore,Md. : 1950)
AMP-Activated Protein Kinase Suppresses Autoimmune Central Nervous System Disease by Regulating M1-Type Macrophage-Th17 Axis.
The AMP-activated protein kinase,AMPK,is an energy-sensing,metabolic switch implicated in various metabolic disorders; however,its role in inflammation is not well defined. We have previously shown that loss of AMPK exacerbates experimental autoimmune encephalomyelitis (EAE) disease severity. In this study,we investigated the mechanism through which AMPK modulates inflammatory disease like EAE. AMPKα1 knockout (α1KO) mice with EAE showed severe demyelination and inflammation in the brain and spinal cord compared with wild-type due to higher expression of proinflammatory Th17 cytokines,including IL-17,IL-23,and IL-1β,impaired blood-brain barrier integrity,and increased infiltration of inflammatory cells in the CNS. Infiltrated CD4 cells in the brains and spinal cords of α1KO with EAE were significantly higher compared with wild-type EAE and were characterized as IL-17 (IL-17 and GM-CSF double-positive) CD4 cells. Increased inflammatory response in α1KO mice was due to polarization of macrophages (Mϕ) to proinflammatory M1 type phenotype (IL-10(low)IL-23/IL-1β/IL-6(high)),and these M1 Mϕ showed stronger capacity to induce allogenic as well as Ag-specific (myelin oligodendrocyte glycoprotein [MOG]35-55) T cell response. Mϕ from α1KO mice also enhanced the encephalitogenic property of MOG35-55-primed CD4 T cells in B6 mice. The increased encephalitogenic MOG-restricted CD4(+) T cells were due to an autocrine effect of IL-1β/IL-23-mediated induction of IL-6 production in α1KO Mϕ,which in turn induce IL-17 and GM-CSF production in CD4 cells. Collectively,our data indicate that AMPK controls the inflammatory disease by regulating the M1 phenotype-Th17 axis in an animal model of multiple sclerosis.
View Publication
Reference
Wang Y et al. (MAR 2017)
Mucosal immunology 10 2 373--384
An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells.
p40,a Lactobacillus rhamnosus GG (LGG)-derived protein,transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells,leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation,this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting immunoglobulin A (IgA) production. p40 upregulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells,which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfr(fl/fl),but not Egfr(fl/fl)-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells,exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B-cell class switching to IgA(+) cells and IgA production,which was suppressed by APRIL receptor-neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells,fecal IgA levels,IgA(+)B220(+),IgA(+)CD19(+),and IgA(+) plasma cells in lamina propria of Egfr(fl/fl),but not of Egfr(fl/fl)-Vil-Cre,mice. Thus p40 upregulates EGFR-dependent APRIL production in intestinal epithelial cells,which may contribute to promoting IgA production.
View Publication
Reference
Itahana Y et al. ( 2016)
Scientific reports 6 28112
Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells.
The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However,how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells,however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs,suggesting it is a suppressed,bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression,and ectopic expression of p21 in hESCs triggered their differentiation. Further,we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner,whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes,thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals,while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs.
View Publication
Reference
Benhamou D et al. (JUL 2016)
Cell reports 16 2 419--31
A c-Myc/miR17-92/Pten Axis Controls PI3K-Mediated Positive and Negative Selection in B Cell Development and Reconstitutes CD19 Deficiency.
PI3K activity determines positive and negative selection of B cells,a key process for immune tolerance and B cell maturation. Activation of PI3K is balanced by phosphatase and tensin homolog (Pten),the PI3K's main antagonistic phosphatase. Yet,the extent of feedback regulation between PI3K activity and Pten expression during B cell development is unclear. Here,we show that PI3K control of this process is achieved post-transcriptionally by an axis composed of a transcription factor (c-Myc),a microRNA (miR17-92),and Pten. Enhancing activation of this axis through overexpression of miR17-92 reconstitutes the impaired PI3K activity for positive selection in CD19-deficient B cells and restores most of the B cell developmental impairments that are evident in CD19-deficient mice. Using a genetic approach of deletion and complementation,we show that the c-Myc/miR17-92/Pten axis critically controls PI3K activity and the sensitivity of immature B cells to negative selection imposed by activation-induced cell death.
View Publication
Reference
Galera-Monge T et al. (MAY 2016)
Stem Cell Research 16 3 766--769
Generation of a human iPSC line from a patient with Leigh syndrome caused by a mutation in the MT-ATP6 gene
Human iPSC line L749.1 was generated from fibroblasts of a patient with Leigh syndrome associated with a heteroplasmic mutation in the MT-ATP6 gene. Reprogramming factors OCT4,SOX2,CMYC and KLF4 were delivered using retroviruses.
View Publication
Reference
Galera-Monge T et al. (MAY 2016)
Stem Cell Research 16 3 673--676
Generation of a human iPSC line from a patient with an optic atrophy ‘plus' phenotype due to a mutation in the OPA1 gene
Human iPSC line Oex2054SV.4 was generated from fibroblasts of a patient with an optic atrophy 'plus' phenotype associated with a heterozygous mutation in the OPA1 gene. Reprogramming factors OCT3/4,SOX2,CMYC and KLF4 were delivered using a non-integrative methodology that involves the use of Sendai virus.
View Publication
Reference
Hansen SK et al. (MAR 2016)
Stem Cell Research 16 3 589--592
Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11.
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by an expansion of the CAG-repeat in ATXN3. In this study,induced pluripotent stem cells (iPSCs) were generated from SCA3 patient dermal fibroblasts by electroporation with episomal plasmids encoding L-MYC,LIN28,SOX2,KLF4,OCT4 and short hairpin RNA targeting P53. The resulting iPSCs had normal karyotype,were free of integrated episomal plasmids,expressed pluripotency markers,could differentiate into the three germ layers in vitro and retained the disease-causing ATXN3 mutation. Potentially,this iPSC line could be a useful tool for the investigation of SCA3 disease mechanisms.
View Publication
Reference
Shetty DK and Inamdar MS (MAR 2016)
Stem Cell Research 16 2 290--292
Generation of human embryonic stem cell line expressing a red fluorescent protein: BJNhem20-pCAG-tdTomato
Human embryonic stem cell line BJNhem20-pCAG-tdTomato was generated using non-viral method. The construct pCAG-tdTomato was transfected using microporation procedure. This fluorescent hESC line can help to study heterogeneity within individual cells in hESC colonies by enabling live tracking of their growth,migration and differentiation properties. This cell line also serves as a resource for additional transgene introduction/knock-out/knock-in generation in a fluorescent background and allows ease of analysis in studies involving cell mixing.
View Publication
Reference
Shetty R and Inamdar MS (MAR 2016)
Stem Cell Research 16 2 271--273
Generation of a constitutively expressing Tetracycline repressor (TetR) human embryonic stem cell line BJNhem20-TetR
Human embryonic stem cell line BJNhem20-TetR was generated using non-viral method. The construct pCAG-TetRnls was transfected using microporation procedure. BJNhem20-TetR can subsequently be transfected with any vector harbouring a TetO (Tet operator) sequence to generate doxycycline based inducible line. For example,in human embryonic stem cells,the pSuperior based TetO system has been transfected into a TetR containing line to generate OCT4 knockdown cell line (Zafarana et al.,2009). Thus BJNhem20-TetR can be used as a tool to perturb gene expression in human embryonic stem cells.
View Publication
Reference
Shetty DK et al. (MAR 2016)
Stem Cell Research 16 2 246--248
Generation of OCIAD1 inducible overexpression human embryonic stem cell line: BJNhem20-OCIAD1-Tet-On
Human embryonic stem cell line BJNhem20-OCIAD1-Tet-On was generated using non-viral method. The constructs pCAG-Tet-On and pTRE-Tight vector driving OCIAD1 expression were transfected using microporation procedure. pCAG-Tet-On cells can be used for inducible expression of any coding sequence cloned into pTRE-Tight vector. For example,in human embryonic stem cells,Tet-On system has been used to generate SOX2 overexpression cell line (Adachi et al.,2010).
View Publication