Bar EE et al. (OCT 2007)
Stem cells (Dayton,Ohio) 25 10 2524--33
Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma.
Brain tumors can arise following deregulation of signaling pathways normally activated during brain development and may derive from neural stem cells. Given the requirement for Hedgehog in non-neoplastic stem cells,we investigated whether Hedgehog blockade could target the stem-like population in glioblastoma multiforme (GBM). We found that Gli1,a key Hedgehog pathway target,was highly expressed in 5 of 19 primary GBM and in 4 of 7 GBM cell lines. Shh ligand was expressed in some primary tumors,and in GBM-derived neurospheres,suggesting a potential mechanism for pathway activation. Hedgehog pathway blockade by cyclopamine caused a 40%-60% reduction in growth of adherent glioma lines highly expressing Gli1 but not in those lacking evidence of pathway activity. When GBM-derived neurospheres were treated with cyclopamine and then dissociated and seeded in media lacking the inhibitor,no new neurospheres formed,suggesting that the clonogenic cancer stem cells had been depleted. Consistent with this hypothesis,the stem-like fraction in gliomas marked by both aldehyde dehydrogenase activity and Hoechst dye excretion (side population) was significantly reduced or eliminated by cyclopamine. In contrast,we found that radiation treatment of our GBM neurospheres increased the percentage of these stem-like cells,suggesting that this standard therapy preferentially targets better-differentiated neoplastic cells. Most importantly,viable GBM cells injected intracranially following Hedgehog blockade were no longer able to form tumors in athymic mice,indicating that a cancer stem cell population critical for ongoing growth had been removed. Disclosure of potential conflicts of interest is found at the end of this article.
View Publication
Cipriano AF et al. (JAN 2017)
Acta biomaterialia 48 499--520
Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys.
Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x=0.15,0.5,1.0,1.5wt%; designated as ZSr41A,B,C,and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro. The second objective was to investigate,for the first time,the early-stage inflammatory response in cultured HUVECs as indicated by the induction of vascular cellular adhesion molecule-1 (VCAM-1). The results showed that the 24-h in vitro degradation of the ZSr41 alloys containing a β-phase with a Zn/Sr at% ratio ∼1.5 was significantly faster than the ZSr41 alloys with Zn/Sr at% ∼1. Additionally,the adhesion density of HUVECs in the direct culture but not in direct contact with the ZSr41 alloys for up to 24h was not adversely affected by the degradation of the alloys. Importantly,neither culture media supplemented with up to 27.6mM Mg(2+) ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on HUVEC responses. In contrast,the significantly higher,yet non-cytotoxic,Zn(2+) ion concentration from the degradation of ZSr41D alloy was likely the cause for the initially higher VCAM-1 expression on cultured HUVECs. Lastly,analysis of the HUVEC-ZSr41 interface showed near-complete absence of cell adhesion directly on the sample surface,most likely caused by either a high local alkalinity,change in surface topography,and/or surface composition. The direct culture method used in this study was proposed as a valuable tool for studying the design aspects of Zn-containing Mg-based biomaterials in vitro,in order to engineer solutions to address current shortcomings of Mg alloys for vascular device applications. STATEMENT OF SIGNIFICANCE Magnesium (Mg) alloys specifically designed for biodegradable implant applications have been the focus of biomedical research since the early 2000s. Physicochemical properties of Mg alloys make these metallic biomaterials excellent candidates for temporary biodegradable implants in orthopedic and cardiovascular applications. As Mg alloys continue to be investigated for biomedical applications,it is necessary to understand whether Mg-based materials or the alloying elements have the intrinsic ability to direct an immune response to improve implant integration while avoiding cell-biomaterial interactions leading to chronic inflammation and/or foreign body reactions. The present study utilized the direct culture method to investigate for the first time the in vitro transient inflammatory activation of endothelial cells induced by the degradation products of Zn-containing Mg alloys.
View Publication
M. Yassin et al. (MAY 2018)
Scientific reports 8 1 6905
Cytoglobin affects tumorigenesis and the expression of ulcerative colitis-associated genes under chemically induced colitis in mice.
Cytoglobin (Cygb) is a member of the hemoglobin family and is thought to protect against cellular hypoxia and oxidative stress. These functions may be particularly important in inflammation-induced cancer,e.g.,in patients with ulcerative colitis (UC). In this study,we investigated the development of inflammation and tumors in a murine model of inflammation-induced colorectal cancer using a combined treatment of azoxymethane and dextran sulfate sodium. A bioinformatics analysis of genome-wide expression data revealed increased colonic inflammation at the molecular level accompanied by enhanced macroscopic tumor development in Cygb-deficient mice. Moreover,the expression of the UC-associated gene neurexophilin and PC-esterase domain family member 4 (Nxpe4) depended on the presence of Cygb in the inflamed colonic mucosa. Compared to wild type mice,RT-qPCR confirmed a 14-fold (p = 0.0003) decrease in Nxpe4 expression in the inflamed colonic mucosa from Cygb-deficient mice. An analysis of Cygb protein expression suggested that Cygb is expressed in fibroblast-like cells surrounding the colonic crypts. Histological examinations of early induced lesions suggested that the effect of Cygb is primarily at the level of tumor promotion. In conclusion,in this model,Cygb primarily seemed to inhibit the development of established microadenomas.
View Publication
A. R. Lefferts et al. ( 2022)
Frontiers in immunology 13 932393
Cytokine competent gut-joint migratory T Cells contribute to inflammation in the joint.
Although studies have identified the presence of gut-associated cells in the enthesis of joints affected by spondylarthritis (SpA),a direct link through cellular transit between the gut and joint has yet to be formally demonstrated. Using KikGR transgenic mice to label in situ and track cellular trafficking from the distal colon to the joint under inflammatory conditions of both the gut and joint,we demonstrate bona-fide gut-joint trafficking of T cells from the colon epithelium,also called intraepithelial lymphocytes (IELs),to distal sites including joint enthesis,the pathogenic site of SpA. Similar to patients with SpA,colon IELs from the TNF$\Delta$ARE/+ mouse model of inflammatory bowel disease and SpA display heightened TNF production upon stimulation. Using ex vivo stimulation of photo-labeled gut-joint trafficked T cells from the popliteal lymph nodes of KikGR and KikGR TNF$\Delta$ARE/+ we saw that the CD4+ photo-labeled population was highly enriched for IL-17 competence in healthy as well as arthritic mice,however in the TNF$\Delta$ARE/+ mice these cells were additionally enriched for TNF. Using transfer of magnetically isolated IELs from TNF+/+ and TNF$\Delta$ARE/+ donors into Rag1 -/- hosts,we confirmed that IELs can exacerbate inflammatory processes in the joint. Finally,we blocked IEL recruitment to the colon epithelium using broad spectrum antibiotics in TNF$\Delta$ARE/+ mice. Antibiotic-treated mice had reduced gut-joint IEL migration,contained fewer Il-17A and TNF competent CD4+ T cells,and lessened joint pathology compared to untreated littermate controls. Together these results demonstrate that pro-inflammatory colon-derived IELs can exacerbate inflammatory responses in the joint through systemic trafficking,and that interference with this process through gut-targeted approaches has therapeutic potential in SpA.
View Publication
Zandstra PW et al. (APR 1997)
Proceedings of the National Academy of Sciences of the United States of America 94 9 4698--703
Cytokine manipulation of primitive human hematopoietic cell self-renewal.
Previous studies have shown that primitive human hematopoietic cells detectable as long-term culture-initiating cells (LTC-ICs) and colony-forming cells (CFCs) can be amplified when CD34(+) CD38(-) marrow cells are cultured for 10 days in serum-free medium containing flt3 ligand (FL),Steel factor (SF),interleukin (IL)-3,IL-6,and granulocyte colony-stimulating factor. We now show that the generation of these two cell types in such cultures is differentially affected at the single cell level by changes in the concentrations of these cytokines. Thus,maximal expansion of LTC-ICs (60-fold) was obtained in the presence of 30 times more FL,SF,IL-3,IL-6,and granulocyte colony-stimulating factor than could concomitantly stimulate the near-maximal (280-fold) amplification of CFCs. Furthermore,the reduced ability of suboptimal cytokine concentrations to support the production of LTC-ICs could be ascribed to a differential response of the stimulated cells since this was not accompanied by a change in the number of input CD34(+) CD38(-) cells that proliferated. Reduced LTC-IC amplification in the absence of a significant effect on CFC generation also occurred when the concentrations of FL and SF were decreased but the concentration of IL-3 was high (as compared with cultures containing high levels of all three cytokines). To our knowledge,these findings provide the first evidence suggesting that extrinsically acting cytokines can alter the self-renewal behavior of primary human hematopoietic stem cells independent of effects on their viability or proliferation.
View Publication
Zaninoni A et al. (MAR 2003)
Experimental hematology 31 3 185--90
Cytokine modulation of nuclear factor-kappaB activity in B-chronic lymphocytic leukemia.
OBJECTIVE: Dysregulation of the apoptotic mechanisms plays a key role in the accumulation of malignant B-chronic lymphocytic leukemia (B-CLL) cells. The transcription nuclear factor (NF)-kappaB is important for cell survival by regulating the expression of anti-apoptotic genes. Several cytokines can modulate leukemic growth and apoptosis in B-CLL. The aim of this study was to determine whether cytokine-mediated regulation of apoptosis occurs via modulation of NF-kappaB activity in peripheral blood mononuclear cells from B-CLL patients. PATIENTS AND METHODS: We evaluated NF-kappaB activity in peripheral blood mononuclear cells from 15 untreated B-CLL patients and 11 controls in resting conditions and in the presence of phorbol-12-myristate-13-acetate (PMA) and different cytokines by electrophoretic mobility shift assay. Apoptosis was studied by spectrophotometric analysis of DNA fragmentation. RESULTS: We found a constitutive high NF-kappaB activity not induced by PMA in B-CLL patients,in contrast with a normal inducible NF-kappaB activity in controls. In B-CLL cultures,addition of interleukin (IL)-4 and IL-13 increased,whereas transforming growth factor (TGF)-beta reduced NF-kappaB activity compared with unstimulated cultures. Accordingly,IL-4 and IL-13 decreased,whereas TGF-beta increased DNA fragmentation compared with unstimulated cultures. IL-13 and IL-4 production was increased,whereas TGF-beta was reduced in PMA-stimulated and unstimulated cultures from B-CLL patients compared with controls. CONCLUSIONS: B-CLL patients have a constitutive high NF-kappaB activity,which is modulated by cytokines. In particular,TGF-beta displays a pro-apoptotic activity,whereas IL-4 and IL-13 have opposite effects. These cytokine alterations could be responsible for a positive autocrine circuit that maintains leukemic cells in a pre-apoptotic state.
View Publication
Romieu-Mourez R et al. (JUN 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 12 7963--73
Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype.
Bone marrow-derived mesenchymal stromal cells (MSC) possess an immune plasticity manifested by either an immunosuppressive or,when activated with IFN-gamma,an APC phenotype. Herein,TLR expression by MSC and their immune regulatory role were investigated. We observed that human MSC and macrophages expressed TLR3 and TLR4 at comparable levels and TLR-mediated activation of MSC resulted in the production of inflammatory mediators such as IL-1beta,IL-6,IL-8/CXCL8,and CCL5. IFN-alpha or IFN-gamma priming up-regulated production of these inflammatory mediators and expression of IFNB,inducible NO synthase (iNOS),and TRAIL upon TLR activation in MSC and macrophages,but failed to induce IL-12 and TNF-alpha production in MSC. Nonetheless,TLR activation in MSC resulted in the formation of an inflammatory site attracting innate immune cells,as evaluated by human neutrophil chemotaxis assays and by the analysis of immune effectors retrieved from Matrigel-embedded MSC injected into mice after in vitro preactivation with cytokines and/or TLR ligands. Hence,TLR-activated MSC are capable of recruiting immune inflammatory cells. In addition,IFN priming combined with TLR activation may increase immune responses induced by Ag-presenting MSC through presentation of Ag in an inflammatory context,a mechanism that could be applied in a cell-based vaccine.
View Publication
Vessillier S et al. (SEP 2015)
Journal of immunological methods 424 43--52
Cytokine release assays for the prediction of therapeutic mAb safety in first-in man trials--Whole blood cytokine release assays are poorly predictive for TGN1412 cytokine storm.
The therapeutic monoclonal antibody (mAb) TGN1412 (anti-CD28 superagonist) caused near-fatal cytokine release syndrome (CRS) in all six volunteers during a phase-I clinical trial. Several cytokine release assays (CRAs) with reported predictivity for TGN1412-induced CRS have since been developed for the preclinical safety testing of new therapeutic mAbs. The whole blood (WB) CRA is the most widely used,but its sensitivity for TGN1412-like cytokine release was recently criticized. In a comparative study,using group size required for 90% power with 5% significance as a measure of sensitivity,we found that WB and 10% (v/v) WB CRAs were the least sensitive for TGN1412 as these required the largest group sizes (n = 52 and 79,respectively). In contrast,the peripheral blood mononuclear cell (PBMC) solid phase (SP) CRA was the most sensitive for TGN1412 as it required the smallest group size (n = 4). Similarly,the PBMC SP CRA was more sensitive than the WB CRA for muromonab-CD3 (anti-CD3) which stimulates TGN1412-like cytokine release (n = 4 and 4519,respectively). Conversely,the WB CRA was far more sensitive than the PBMC SP CRA for alemtuzumab (anti-CD52) which stimulates FcγRI-mediated cytokine release (n = 8 and 180,respectively). Investigation of potential factors contributing to the different sensitivities revealed that removal of red blood cells (RBCs) from WB permitted PBMC-like TGN1412 responses in a SP CRA,which in turn could be inhibited by the addition of the RBC membrane protein glycophorin A (GYPA); this observation likely underlies,at least in part,the poor sensitivity of WB CRA for TGN1412. The use of PBMC SP CRA for the detection of TGN1412-like cytokine release is recommended in conjunction with adequately powered group sizes for dependable preclinical safety testing of new therapeutic mAbs.
View Publication
Galat Y et al. (MAR 2017)
Stem cell research & therapy 8 1 67
Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential.
BACKGROUND The robust generation of human hematopoietic progenitor cells from induced or embryonic pluripotent stem cells would be beneficial for multiple areas of research,including mechanistic studies of hematopoiesis,the development of cellular therapies for autoimmune diseases,induced transplant tolerance,anticancer immunotherapies,disease modeling,and drug/toxicity screening. Over the past years,significant progress has been made in identifying effective protocols for hematopoietic differentiation from pluripotent stem cells and understanding stages of mesodermal,endothelial,and hematopoietic specification. Thus,it has been shown that variations in cytokine and inhibitory molecule treatments in the first few days of hematopoietic differentiation define primitive versus definitive potential of produced hematopoietic progenitor cells. The majority of current feeder-free,defined systems for hematopoietic induction from pluripotent stem cells include prolonged incubations with various cytokines that make the differentiation process complex and time consuming. We established that the application of Wnt agonist CHIR99021 efficiently promotes differentiation of human pluripotent stem cells in the absence of any hematopoietic cytokines to the stage of hemogenic endothelium capable of definitive hematopoiesis. METHODS The hemogenic endothelium differentiation was accomplished in an adherent,serum-free culture system by applying CHIR99021. Hemogenic endothelium progenitor cells were isolated on day 5 of differentiation and evaluated for their endothelial,myeloid,and lymphoid potential. RESULTS Monolayer induction based on GSK3 inhibition,described here,yielded a large number of CD31(+)CD34(+) hemogenic endothelium cells. When isolated and propagated in adherent conditions,these progenitors gave rise to mature endothelium. When further cocultured with OP9 mouse stromal cells,these progenitors gave rise to various cells of myeloid lineages as well as natural killer lymphoid,T-lymphoid,and B-lymphoid cells. CONCLUSION The results of this study substantiate a method that significantly reduces the complexity of current protocols for hematopoietic induction,offers a defined system to study the factors that affect the early stages of hematopoiesis,and provides a new route of lymphoid and myeloid cell derivation from human pluripotent stem cells,thus enhancing their use in translational medicine.
View Publication
Sangiolo D et al. (JAN 2014)
Cancer research 74 1 119--129
Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas.
Unresectable metastatic bone sarcoma and soft-tissue sarcomas (STS) are incurable due to the inability to eradicate chemoresistant cancer stem-like cells (sCSC) that are likely responsible for relapses and drug resistance. In this study,we investigated the preclinical activity of patient-derived cytokine-induced killer (CIK) cells against autologous bone sarcoma and STS,including against putative sCSCs. Tumor killing was evaluated both in vitro and within an immunodeficient mouse model of autologous sarcoma. To identify putative sCSCs,autologous bone sarcoma and STS cells were engineered with a CSC detector vector encoding eGFP under the control of the human promoter for OCT4,a stem cell gene activated in putative sCSCs. Using CIK cells expanded from 21 patients,we found that CIK cells efficiently killed allogeneic and autologous sarcoma cells in vitro. Intravenous infusion of CIK cells delayed autologous tumor growth in immunodeficient mice. Further in vivo analyses established that CIK cells could infiltrate tumors and that tumor growth inhibition occurred without an enrichment of sCSCs relative to control-treated animals. These results provide preclinical proof-of-concept for an effective strategy to attack autologous sarcomas,including putative sCSCs,supporting the clinical development of CIK cells as a novel class of immunotherapy for use in settings of untreatable metastatic disease.
View Publication
Mayani H et al. (JUN 1993)
Blood 81 12 3252--8
Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells.
To study the role of different cytokine combinations on the proliferation and differentiation of highly purified primitive progenitor cells,a serum-free liquid culture system was used in combination with phenotypic and functional analysis of the cells produced in culture. CD34+ CD45RAlo CD71lo cells,purified from umbilical cord blood by flow cytometry and cell sorting,were selected for this study because of their high content of clonogenic cells (34%),particularly multipotent progenitors (CFU-MIX,12% of all cells). Four cytokine combinations were tested: (1) mast cell growth factor (MGF; a c-kit ligand) and interleukin-6 (IL-6); (2) MGF,IL-6,IL-3,and erythropoietin (Epo); (3) MGF,IL-6,granulocyte-macrophage colony-stimulating factor (GM-CSF)/IL-3 fusion protein (FP),macrophage colony-stimulating factor (M-CSF),and granulocyte-CSF (G-CSF); and (4) MGF,IL-6,FP,M-CSF,G-CSF,and Epo. Maximum numbers of erythroid progenitors (BFU-E,up to 55-fold increase) and mature erythroid cells were observed in the presence of MGF,IL-6,IL-3,and Epo,whereas maximum levels of myeloid progenitors (CFU-C,up to 70-fold increase) and mature myeloid cells were found in cultures supplemented with MGF,IL-6,FP,M-CSF,and G-CSF. When MGF,IL-6,FP,M-CSF,G-CSF,and Epo were present,maximum levels of both erythroid and myeloid progenitors and their progeny were observed. These results indicate that specific cytokine combinations can act directly on primitive hematopoietic cells resulting in significant expansion of progenitor cell numbers and influencing their overall patterns of proliferation and differentiation. Furthermore,the observations presented in this study suggest that the cytokine combinations used were unable to bias lineage commitment of multipotent progenitors,but rather had a permissive effect on the development of lineage-restricted clonogenic cells.
View Publication
Cytokine-regulated GADD45G induces differentiation and lineage selection in hematopoietic stem cells.
The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC) must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however,the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely,the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that,once GADD45G is expressed,the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here,we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.
View Publication