Wei W et al. (MAY 2017)
Artificial organs 41 5 452--460
Danshen-Enhanced Cardioprotective Effect of Cardioplegia on Ischemia Reperfusion Injury in a Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Model.
Myocardial ischemia-reperfusion (I/R) injury is unavoidable during cardioplegic arrest and open-heart surgery. Danshen is one of the most popular traditional herbal medicines in China,which has entered the Food and Drug Administration-approved phase III clinical trial. This study was aimed to develop a human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) model to mimic I/R injury and evaluate the cardioprotective effect of regular cardioplegic solution with Danshen. hiPSC-CMs were cultured with the crystalloid cardioplegic solution (Thomas group) and Thomas solution with 2 or 10 µg/mL Danshen (Thomas plus Danshen groups). The cells under normoxic culture condition served as baseline group. Then,the cells were placed in a modular incubator chamber. After 45 min hypoxia and 3 h reoxygenation,hiPSC-CMs subjected to hypoxia/reoxygenation resulted in a sharp increase of reactive oxygen species (ROS) content in Thomas group versus baseline group. Compared with the Thomas group,ROS accumulation was significant suppressed in Thomas plus Danshen groups,which might result from elevating the content of glutathione and enhanced activities of superoxide dismutase and glutathione peroxidase. The enhanced L-type Ca(2+) current in hiPSC-CMs after I/R injury was also significantly decreased by Danshen,and meanwhile intracellular Ca(2+) level was reduced and calcium overload was suppressed. Thomas plus Danshen groups also presented less irregular transients and lower apoptosis rates. As a result,Danshen could improve antioxidant and calcium handling in cardiomyocytes during I/R and lead to reduced arrhythmia events and apoptosis rates. hiPSC-CMs model offered a platform for the future translational study of the cardioplegia.
View Publication
Liu C et al. (DEC 2015)
Data in Brief 5 12 599--604
Data in support of DPF2 regulates OCT4 protein level and nuclear distribution
DPF2,also named ubi-d4/requiem (REQU),interacts with a protein complex containing OCT4. This paper provides data in support of the research article entitled DPF2 regulates OCT4 protein level and nuclear distribution". The highlights include: (1) Denature-immunoprecipitation assay revealed ubiquitination of OCT4 in pluripotent H9 cells�
View Publication
Khalfallah O et al. (JUL 2009)
Stem cells (Dayton,Ohio) 27 7 1529--37
Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation.
Dax-1 (Nr0b1) is an orphan member of the nuclear hormone receptor superfamily that has a key role in adrenogonadal development and function. Recent studies have also implicated Dax-1 in the transcriptional network controlling embryonic stem (ES) cell pluripotency. Here,we show that Dax-1 expression is affected by differentiating treatments and pharmacological activation of beta-catenin-dependent transcription in mouse ES cells. Furthermore,Dax-1 knockdown induced upregulation of multilineage differentiation markers,and produced enhanced differentiation and defects in ES viability and proliferation. Through RNA interference and transcriptome analysis,we have identified genes regulated by Dax-1 in mouse ES cells at 24 and 48 hours after knockdown. Strikingly,the great majority of these genes are upregulated,showing that the prevalent function of Dax-1 is to act as a transcriptional repressor in mouse ES cells,as confirmed by experiments using the Gal4 system. Genes involved in tissue differentiation and control of proliferation are significantly enriched among Dax-1-regulated transcripts. These data show that Dax-1 is an essential element in the molecular circuit involved in the maintenance of ES cell pluripotency and have implications for the understanding of stem cell function in both physiological (adrenal gland) and clinical (Ewing tumors) settings where Dax-1 plays a pivotal role in development and pathogenesis,respectively.
View Publication
Hosszu KK et al. ( 2012)
Blood 120 6 1228--1237
DC-SIGN, C1q and gC1qR forge a trimolecular receptor complex on the surface of human monocyte-derived immature dendritic cells
C1q modulates the differentiation and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because the two C1q receptors found on the DC surface - gC1qR and cC1qR - lack a direct conduit into intracellular elements,we postulated that the receptors must form complexes with transmembrane partners. Here we show that DC-SIGN,a C-type lectin expressed on DCs,binds directly to C1q,as assessed by ELISA,flow cytometry and immuno-precipitation experiments. Surface plasmon resonance analysis revealed that the interaction was specific,and intact C1q,as well as the globular portion of C1q,bound to DC-SIGN. While IgG significantly reduced the binding; the Arg residues (162-163) of the C1q-A-chain,considered to contribute to C1q-IgG interaction,were not required for C1q binding to DC-SIGN. Binding was significantly reduced in the absence of Ca(2+) and by pre-incubation of DC-SIGN with mannan,suggesting that C1q binds to DC-SIGN at its principal Ca(2+)-binding pocket,which has increased affinity for mannose residues. Antigen-capture ELISA and immunofluorescence microscopy revealed that C1q and gC1qR associate with DC-SIGN on blood DC precursors and immature DCs. Thus the data suggest that C1q/gC1qR may regulate DC differentiation and function through DC-SIGN-mediated induction of cell signaling pathways.
View Publication
Alqahtani H et al. (FEB 2016)
Cellular signalling 28 2 42--50
DDX17 (P72), a Sox2 binding partner, promotes stem-like features conferred by Sox2 in a small cell population in estrogen receptor-positive breast cancer.
We have previously demonstrated the existence of two phenotypically distinct cell subsets in estrogen receptor (ER)-positive breast cancer (BC) based on their differential response to a Sox2 reporter (SRR2),with reporter responsive (RR) cells being more tumorigenic and stem-like than reporter unresponsive (RU) cells. To delineate the molecular mechanisms underlying this phenotypic dichotomy,we tested our hypothesis that Sox2,which is a key regulator of the RR phenotype,is under the control of its binding partners. In this study,we focused on DDX17,known to be a transcription co-activator and found to be a Sox2 binding partner by liquid chromatography-mass spectrometry. Using immunoprecipitation,we confirmed the binding between DDX17 and Sox2,although this interaction was largely restricted to RR cells. While DDX17 was found in both the cytoplasm and nuclei in RU cells,it is confined to the nuclei in RR cells. siRNA knockdown of DDX17 in RR cells substantially decreased the Sox2-SRR2 binding and significantly decreased the SRR2 reporter activity without affecting the protein level of Sox2. Using ChIP-PCR,DDX17 knockdown also significantly decreased the binding of Sox2 to genomic SRR2,as well as 3 of its specific gene targets including MUC15,CCND1 and CD133. Correlating with these findings,siRNA knockdown of DDX17 significantly reduced soft agar colony formation and mammosphere formation in RR cells but not RU cells. To conclude,DDX17 is a Sox2-binding protein in ER-positive BC. In RR but not RU cells,DDX17 enhances the tumorigenic and stem-like features of Sox2 by promoting its binding to its target genes.
View Publication
(Dec 2024)
Nature Communications 15
DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin,which underpins their ability to self-renew and differentiate. Here,we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C,DNA/RNA-FISH,and biomolecular condensate analysis,we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component,driven by specific nucleolar RNAs. Loss of DDX18 disrupts nucleolar substructures,impairing centromere clustering and perinucleolar heterochromatin (PNH) formation. To probe this further,we develop NoCasDrop,a tool enabling precise nucleolar targeting and controlled liquid condensation,which restores centromere clustering and PNH integrity while modulating developmental gene expression. This study reveals how nucleolar phase separation dynamics govern chromatin organization and cell fate,offering fresh insights into the molecular regulation of stem cell pluripotency. Pluripotent stem cells depend on specialized nuclear organization for their function. Here,the authors show that DDX18 regulates nucleolar phase separation and chromatin architecture to preserve human embryonic stem cell pluripotency.
View Publication
(Aug 2025)
Nature Communications 16
DDX41 resolves G-quadruplexes to maintain erythroid genome integrity and prevent cGAS-mediated cell death
Deleterious germline DDX41 variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs),yet their role in MNs remains unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for other hematopoietic lineages. Ddx41 knockout in early erythropoiesis is embryonically lethal,while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4),which co-distribute with DDX41 on the erythroid genome. DDX41 directly binds to and resolves G4,which is significantly compromised in MN-associated DDX41 mutants. G4 accumulation induces erythroid genome instability,ribosomal defects,and p53 upregulation. However,p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel,genome instability also activates the cGas-Sting pathway,impairing survival,as cGas deficiency rescues the lethality of hematopoietic-specific Ddx41 knockout mice. This is supported by data from a DDX41-mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 resolvase,essential for erythroid genome stability and suppressing the cGAS-STING pathway. Germline DDX41 mutations are linked to myeloid neoplasms,but their roles in the disease is unclear. Here,the authors show that DDX41 resolves G-quadruplex structures to maintain erythroid genome stability and prevent cGAS-mediated cell death. These functions are lost in disease-associated variants.
View Publication
Sanchez-Diaz PC et al. (APR 2013)
PLoS ONE 8 4 e61622
De-regulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development.
BackgroundmicroRNAs (miRNAs) have been implicated in the control of many biological processes and their deregulation has been associated with many cancers. In recent years,the cancer stem cell (CSC) concept has been applied to many cancers including pediatric. We hypothesized that a common signature of deregulated miRNAs in the CSCs fraction may explain the disrupted signaling pathways in CSCs.Methodology/ResultsUsing a high throughput qPCR approach we identified 26 CSC associated differentially expressed miRNAs (DEmiRs). Using BCmicrO algorithm 865 potential CSC associated DEmiR targets were obtained. These potential targets were subjected to KEGG,Biocarta and Gene Ontology pathway and biological processes analysis. Four annotated pathways were enriched: cell cycle,cell proliferation,p53 and TGF-beta/BMP. Knocking down hsa-miR-21-5p,hsa-miR-181c-5p and hsa-miR-135b-5p using antisense oligonucleotides and small interfering RNA in cell lines led to the depletion of the CSC fraction and impairment of sphere formation (CSC surrogate assays).ConclusionOur findings indicated that CSC associated DEmiRs and the putative pathways they regulate may have potential therapeutic applications in pediatric cancers.
View Publication
Jo H et al. ( 2011)
Proceedings of the National Academy of Sciences of the United States of America 108 16 6486--6491
Deactivation of Akt by a small molecule inhibitor targeting pleckstrin homology domain and facilitating Akt ubiquitination.
The phosphatidylinositol-3,4,5-triphosphate (PIP3) binding function of pleckstrin homology (PH) domain is essential for the activation of oncogenic Akt/PKB kinase. Following the PIP3-mediated activation at the membrane,the activated Akt is subjected to other regulatory events,including ubiquitination-mediated deactivation. Here,by identifying and characterizing an allosteric inhibitor,SC66,we show that the facilitated ubiquitination effectively terminates Akt signaling. Mechanistically,SC66 manifests a dual inhibitory activity that directly interferes with the PH domain binding to PIP3 and facilitates Akt ubiquitination. A known PH domain-dependent allosteric inhibitor,which stabilizes Akt,prevents the SC66-induced Akt ubiquitination. A cancer-relevant Akt1 (e17k) mutant is unstable,making it intrinsically sensitive to functional inhibition by SC66 in cellular contexts in which the PI3K inhibition has little inhibitory effect. As a result of its dual inhibitory activity,SC66 manifests a more effective growth suppression of transformed cells that contain a high level of Akt signaling,compared with other inhibitors of PIP3/Akt pathway. Finally,we show the anticancer activity of SC66 by using a soft agar assay as well as a mouse xenograft tumor model. In conclusion,in this study,we not only identify a dual-function Akt inhibitor,but also demonstrate that Akt ubiquitination could be chemically exploited to effectively facilitate its deactivation,thus identifying an avenue for pharmacological intervention in Akt signaling.
View Publication
Lalli PN et al. (NOV 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 9 5793--802
Decay accelerating factor can control T cell differentiation into IFN-gamma-producing effector cells via regulating local C5a-induced IL-12 production.
A newly recognized link between the complement system and adaptive immunity is that decay accelerating factor (DAF),a cell surface C3/C5 convertase regulator,exerts control over T cell responses. Extending these results,we show that cultures of Marilyn TCR-transgenic T cells stimulated with DAF-deficient (Daf1(-/-)) APCs produce significantly more IL-12,C5a,and IFN-gamma compared with cultures containing wild-type APCs. DAF-regulated IL-12 production and subsequent T cell differentiation into IFN-gamma-producing effectors was prevented by the deficiency of either C3 or C5a receptor (C5aR) in the APC,demonstrating a link between DAF,local complement activation,IL-12,and T cell-produced IFN-gamma. Bone marrow chimera experiments verified that bone marrow cell-expressed C5aR is required for optimal differentiation into IFN-gamma-producing effector T cells. Overall,our results indicate that APC-expressed DAF regulates local production/activation of C5a following cognate T cell/APC interactions. Through binding to its receptor on APCs the C5a up-regulates IL-12 production,this in turn,contributes to directing T cell differentiation toward an IFN-gamma-producing phenotype. The findings have implications for design of therapies aimed at altering pathologic T cell immunity.
View Publication
T. Boerstler et al. (Oct 2025)
Communications Biology 8
Deciphering brain organoid heterogeneity by identifying key quality determinants
Brain organoids derived from human pluripotent stem cells (hPSCs) hold immense potential for modeling neurodevelopmental processes and disorders. However,their experimental variability and undefined organoid selection criteria for analysis hinder reproducibility. As part of the Bavarian ForInter consortium,we generated 72 brain organoids from distinct hPSC lines. We conducted a comprehensive analysis of their morphological and cellular characteristics at an early stage of their development. In our assessment,the Feret diameter emerged as a reliable,single parameter that characterizes brain organoid quality. Transcriptomic analysis of our organoid identified the abundance of unintended mesodermal differentiation as a major confounder of unguided brain organoid differentiation,correlating with Feret diameter. High-quality organoids consistently displayed a lower presence of mesenchymal cells. These findings provide a framework for enhancing brain organoid standardization and reproducibility,underscoring the need for morphological quality controls and considering the influence of mesenchymal cells on organoid-based modeling. Subject terms: Mesenchymal stem cells,Induced pluripotent stem cells,Stem-cell differentiation
View Publication
(May 2025)
Nature Communications 16
Deciphering signaling mechanisms and developmental dynamics in extraembryonic mesoderm specification from hESCs
Extraembryonic mesoderm (ExM) is crucial for human development,yet its specification is poorly understood. Human embryonic stem cell (hESC)-based models,including embryoids and differentiated derivatives,are emerging as promising tools for studying ExM development. Despite this,the signaling mechanisms and developmental dynamics that underlie ExM specification from hESCs remain challenging to study. Here,we report that the modulation of BMP,WNT,and Nodal signaling pathways can rapidly (4-5 days) and efficiently (?~90%) induce the differentiation of both naive and primed hESCs into ExM-like cells (ExMs). We reveal that ExM specification from hESCs predominantly proceeds through intermediates exhibiting a primitive streak (PS)-like gene expression pattern and delineate the regulatory roles of WNT and Nodal signaling in this process. Furthermore,we find that the initial pluripotent state governs hESC-based ExM specification by influencing signal response,cellular composition,developmental progression,and transcriptional characteristics of the resulting ExMs. Our study provides promising models for dissecting human ExM development and sheds light on the signaling principles,developmental dynamics,and influences of pluripotency states underlying ExM specification from hESCs. Extraembryonic mesoderm (ExM) is crucial but its formation is unclear. Here,authors develop efficient systems to specify ExM from hESCs and dissect the signaling mechanisms,specification dynamics,and impact of pluripotent states in ExM formation.
View Publication