Bornancin F et al. ( 2015)
The Journal of Immunology 194 8 3723--3734
Deficiency of MALT1 Paracaspase Activity Results in Unbalanced Regulatory and Effector T and B Cell Responses Leading to Multiorgan Inflammation
The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold,recruiting downstream signaling proteins,as well as by proteolytic cleavage of multiple substrates. However,the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation,we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells,B1 B cells,IL-10-producing B cells,regulatory T cells,and mature T and B cells. In general,immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro,inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation,impaired IL-2 and TNF-α production,as well as defective Th17 differentiation. Consequently,Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly,Malt1(PD/PD) animals developed a multiorgan inflammatory pathology,characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels,which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.
View Publication
Z. Yan et al. (apr 2019)
JCI insight 5
Deficiency of Socs3 leads to brain-targeted EAE via enhanced neutrophil activation and ROS production.
Dysregulation of the JAK/STAT signaling pathway is associated with Multiple Sclerosis (MS) and its mouse model,Experimental Autoimmune Encephalomyelitis (EAE). Suppressors Of Cytokine Signaling (SOCS) negatively regulate the JAK/STAT pathway. We previously reported a severe,brain-targeted,atypical form of EAE in mice lacking Socs3 in myeloid cells (Socs3DeltaLysM),which is associated with cerebellar neutrophil infiltration. There is emerging evidence that neutrophils are detrimental in the pathology of MS/EAE,however,their exact function is unclear. Here we demonstrate that neutrophils from the cerebellum of Socs3DeltaLysM mice show a hyper-activated phenotype with excessive production of reactive oxygen species (ROS) at the peak of EAE. Neutralization of ROS in vivo delayed the onset and reduced severity of atypical EAE. Mechanistically,Socs3-deficient neutrophils exhibit enhanced STAT3 activation,a hyper-activated phenotype in response to G-CSF,and upon G-CSF priming,increased ROS production. Neutralization of G-CSF in vivo significantly reduced the incidence and severity of the atypical EAE phenotype. Overall,our work elucidates that hypersensitivity of G-CSF/STAT3 signaling in Socs3DeltaLysM mice leads to atypical EAE by enhanced neutrophil activation and increased oxidative stress,which may explain the detrimental role of G-CSF in MS patients.
View Publication
Hyka-Nouspikel N et al. (SEP 2012)
Stem Cells 30 9 1901--10
Deficient DNA damage response and cell cycle checkpoints lead to accumulation of point mutations in human embryonic stem cells
Human embryonic stem cells (hESCs) tend to lose genomic integrity during long periods of culture in vitro and to acquire a cancer-like phenotype. In this study,we aim at understanding the contribution of point mutations to the adaptation process and at providing a mechanistic explanation for their accumulation. We observed that,due to the absence of p21/Waf1/Cip1,cultured hESCs lack proper cell cycle checkpoints and are vulnerable to the kind of DNA damage usually repaired by the highly versatile nucleotide excision repair (NER) pathway. In response to UV-induced DNA damage,the majority of hESCs succumb to apoptosis; however,a subpopulation continues to proliferate,carrying damaged DNA and accumulating point mutations with a typical UV-induced signature. The UV-resistant cells retain their proliferative capacity and potential for pluripotent differentiation and are markedly less apoptotic to subsequent UV exposure. These findings demonstrate that,due to deficient DNA damage response,the modest NER activity in hESCs is insufficient to prevent increased mutagenesis. This provides for the appearance of genetically aberrant hESCs,paving the way for further major genetic changes.
View Publication
R. G. James et al. (JUL 2018)
American journal of respiratory cell and molecular biology 59 1 104--113
Deficient Follistatin-like 3 Secretion by Asthmatic Airway Epithelium Impairs Fibroblast Regulation and Fibroblast-to-Myofibroblast Transition.
Bronchial epithelial cells (BECs) from healthy children inhibit human lung fibroblast (HLF) expression of collagen and fibroblast-to-myofibroblast transition (FMT),whereas asthmatic BECs do so less effectively,suggesting that diminished epithelial-derived regulatory factors contribute to airway remodeling. Preliminary data demonstrated that secretion of the activin A inhibitor follistatin-like 3 (FSTL3) by healthy BECs was greater than that by asthmatic BECs. We sought to determine the relative secretion of FSTL3 and activin A by asthmatic and healthy BECs,and whether FSTL3 inhibits FMT. To quantify the abundance of the total proteome FSTL3 and activin A in supernatants of differentiated BEC cultures from healthy children and children with asthma,we performed mass spectrometry and ELISA. HLFs were cocultured with primary BECs and then HLF expression of collagen I and alpha$-smooth muscle actin (alpha$-SMA) was quantified by qPCR,and FMT was quantified by flow cytometry. Loss-of-function studies were conducted using lentivirus-delivered shRNA. Using mass spectrometry and ELISA results from larger cohorts,we found that FSTL3 concentrations were greater in media conditioned by healthy BECs compared with asthmatic BECs (4,012 vs. 2,553 pg/ml; P = 0.002),and in media conditioned by asthmatic BECs from children with normal lung function relative to those with airflow obstruction (FEV1/FVC ratio {\textless} 0.8; n = 9; 3,026 vs. 1,922 pg/ml; P = 0.04). shRNA depletion of FSTL3 in BECs (n = 8) increased HLF collagen I expression by 92{\%} (P = 0.001) and alpha$-SMA expression by 88{\%} (P = 0.02),and increased FMT by flow cytometry in cocultured HLFs,whereas shRNA depletion of activin A (n = 6) resulted in decreased alpha$-SMA (22{\%}; P = 0.01) expression and decreased FMT. Together,these results indicate that deficient FSTL3 expression by asthmatic BECs impairs epithelial regulation of HLFs and FMT.
View Publication
Chin ACP et al. (JUN 2010)
Stem cells and development 19 6 753--61
Defined and serum-free media support undifferentiated human embryonic stem cell growth.
Four commercially available serum-free and defined culture media tested on 2 human embryonic stem cell (hESC) lines were all found to support undifferentiated growth for textgreater10 continuous passages. For hESC cultured with defined StemPro and mTeSR1 media,the cells were maintained feeder-free on culture dishes coated with extracellular matrices (ECMs) with no requirement of feeder-conditioned media (CM). For xeno-free serum replacer (XSR),HEScGRO,and KnockOut media,mitotically inactivated human foreskin feeders (hFFs) were required for hESC growth. Under the different media conditions,cells continued to exhibit alkaline phosphatase activity and expressed undifferentiated hESC markers Oct-4,stage-specific embryonic antigens 4 (SSEA-4),and Tra-1-60. In addition,hESC maintained the expression of podocalyxin-like protein-1 (PODXL),an antigen recently reported in another study to be present in undifferentiated hESC. The cytotoxic antibody mAb 84 binds via PODXL expressed on hESC surface and kills textgreater90% of hESC within 45 min of incubation. When these cells were spontaneously differentiated to form embryoid bodies,derivatives representing the 3 germ layers were obtained. Injection of hESC into animal models resulted in teratomas and the formation of tissue types indicative of ectodermal,endodermal,and mesodermal lineages were observed. Our data also suggested that StemPro and mTeSR1 media were more optimal for hESC proliferation compared to cells grown on CM because the growth rate of hESC increased by 30%-40%,higher split ratio was thus required for weekly passaging. This is advantageous for the large-scale cultivation of hESC required in clinical applications.
View Publication
Tiburcy M et al. (MAY 2017)
Circulation 135 19 1832--1847
Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.
BACKGROUND Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling,drug screening,and heart repair. Here,we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS We systematically investigated cell composition,matrix,and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological,functional,and transcriptome analyses to benchmark maturation of EHM. RESULTS EHM demonstrated important structural and functional properties of postnatal myocardium,including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction,cardiomyocyte hypertrophy,cardiomyocyte death,and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition,we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined,serum-free conditions.
View Publication
Miyoshi N et al. (JAN 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 1 40--5
Defined factors induce reprogramming of gastrointestinal cancer cells.
Although cancer is a disease with genetic and epigenetic origins,the possible effects of reprogramming by defined factors remain to be fully understood. We studied the effects of the induction or inhibition of cancer-related genes and immature status-related genes whose alterations have been reported in gastrointestinal cancer cells. Retroviral-mediated introduction of induced pluripotent stem (iPS) cell genes was necessary for inducing the expression of immature status-related proteins,including Nanog,Ssea4,Tra-1-60,and Tra-1-80 in esophageal,stomach,colorectal,liver,pancreatic,and cholangiocellular cancer cells. Induced cells,but not parental cells,possessed the potential to express morphological patterns of ectoderm,mesoderm,and endoderm,which was supported by epigenetic studies,indicating methylation of DNA strands and the histone H3 protein at lysine 4 in promoter regions of pluripotency-associated genes such as NANOG. In in vitro analysis induced cells showed slow proliferation and were sensitized to differentiation-inducing treatment,and in vivo tumorigenesis was reduced in NOD/SCID mice. This study demonstrated that pluripotency was manifested in induced cells,and that the induced pluripotent cancer (iPC) cells were distinct from natural cancer cells with regard to their sensitivity to differentiation-inducing treatment. Retroviral-mediated introduction of iPC cells confers higher sensitivity to chemotherapeutic agents and differentiation-inducing treatment.
View Publication
Doran MR et al. (JUL 2010)
Biomaterials 31 19 5137--42
Defined high protein content surfaces for stem cell culture.
Unlocking the clinical potential of stem cell based therapies requires firstly elucidation of the biological mechanisms which direct stem cell fate decisions and thereafter,technical advances which allow these processes to be driven in a fully defined culture environment. Strategies for the generation of defined surfaces for human embryonic stem cell (hESC) and mesenchymal stem cell (MSC) culture remain in their infancy. In this paper we outline a simple,effective and efficient method for presenting proteins or peptides on an otherwise non-fouling Layer-by-Layer (LbL) self-assembled surface of hyaluronic acid (HA) and chitosan (CHI). We are able to generate a surface that has both good temporal stability and the ability to direct biological outcomes based on its defined surface composition. Surface functionalization is achieved through suspending the selected extracellular matrix (ECM) protein domain or extracted full-length protein in buffer containing a cross-linking agent (N-hydroxysulfosuccinimide/N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride) over the LbL HA-CHI surface and then allowing the solvent to evaporate overnight. This simple,but important step results in remarkable protein deposition efficiencies often exceeding 50%,whereas traditional cross-linking methods result in such poor deposition of non-collagenous proteins that a.) quantification of bound amounts of protein is outside the resolution of commonly utilized protein assays,and b.) these surfaces are both unable to support cell attachment and growth. The utility of the protein-modified HA-CHI surfaces is demonstrated through the identification of specific hESC attachment efficiencies and through directing MSC osteogenic outcomes on these fully defined surfaces. This simple and scalable method is shown to enable the development of defined stem cell culture conditions,as well as the elucidation of the fundamental biological processes necessary for the realization of stem cell based therapies.
View Publication
Lippmann ES et al. (APR 2014)
Stem Cells 32 4 1032--1042
Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors.
The embryonic neuroepithelium gives rise to the entire central nervous system in vivo,making it an important tissue for developmental studies and a prospective cell source for regenerative applications. Current protocols for deriving homogenous neuroepithelial cultures from human pluripotent stem cells (hPSCs) consist of either embryoid body-mediated neuralization followed by a manual isolation step or adherent differentiation using small molecule inhibitors. Here,we report that hPSCs maintained under chemically defined,feeder-independent,and xeno-free conditions can be directly differentiated into pure neuroepithelial cultures ([mt]90% Pax6(+)/N-cadherin(+) with widespread rosette formation) within 6 days under adherent conditions,without small molecule inhibitors,and using only minimalistic medium consisting of Dulbecco's modified Eagle's medium/F-12,sodium bicarbonate,selenium,ascorbic acid,transferrin,and insulin (i.e.,E6 medium). Furthermore,we provide evidence that the defined culture conditions enable this high level of neural conversion in contrast to hPSCs maintained on mouse embryonic fibroblasts (MEFs). In addition,hPSCs previously maintained on MEFs could be rapidly converted to a neural compliant state upon transfer to these defined conditions while still maintaining their ability to generate all three germ layers. Overall,this fully defined and scalable protocol should be broadly useful for generating therapeutic neural cells for regenerative applications.
View Publication
Caiazzo M et al. (MAR 2016)
Nature Materials 15 3 344--352
Defined three-dimensional microenvironments boost induction of pluripotency
Since the discovery of induced pluripotent stem cells (iPSCs),numerous approaches have been explored to improve the original protocol,which is based on a two-dimensional (2D) cell-culture system. Surprisingly,nothing is known about the effect of a more biologically faithful 3D environment on somatic-cell reprogramming. Here,we report a systematic analysis of how reprogramming of somatic cells occurs within engineered 3D extracellular matrices. By modulating microenvironmental stiffness,degradability and biochemical composition,we have identified a previously unknown role for biophysical effectors in the promotion of iPSC generation. We find that the physical cell confinement imposed by the 3D microenvironment boosts reprogramming through an accelerated mesenchymal-to-epithelial transition and increased epigenetic remodelling. We conclude that 3D microenvironmental signals act synergistically with reprogramming transcription factors to increase somatic plasticity.
View Publication
Ludwig T et al. (SEP 2007)
Current protocols in stem cell biology Chapter 1 September Unit 1C.2
Defined, Feeder-Independent Medium for Human Embryonic Stem Cell Culture
The developmental potential of human ES cells makes them an important tool in developmental,pharmacological,and clinical research. For human ES cell technology to be fully exploited,however,culture efficiency must be improved,large-scale culture enabled,and safety ensured. Traditional human ES cell culture systems have relied on serum products and mouse feeder layers,which limit the scale,present biological variability,and expose the cells to potential contaminants. Defined,feeder-independent culture systems improve the safety and efficiency of ES cell technology,enabling translational research. The protocols herein are designed with the standard research laboratory in mind. They contain recipes for the formulation of mTeSR (a defined medium for human ES cell culture) and detailed protocols for the culture,transfer,and passage of cells grown in these feeder-independent conditions. They provide a basis for routine feeder-independent culture,and a starting point for additional optimization of culture conditions.
View Publication
Yap LYW et al. (FEB 2011)
Tissue engineering. Part C,Methods 17 2 193--207
Defining a threshold surface density of vitronectin for the stable expansion of human embryonic stem cells.
Current methodology for pluripotent human embryonic stem cells (hESCs) expansion relies on murine sarcoma basement membrane substrates (Matrigel™),which precludes the use of these cells in regenerative medicine. To realize the clinical efficacy of hESCs and their derivatives,expansion of these cells in a defined system that is free of animal components is required. This study reports the successful propagation of hESCs (HES-3 and H1) for textgreater 20 passages on tissue culture-treated polystyrene plates,coated from 5 μg/mL of human plasma-purified vitronectin (VN) solution. Cells maintain expression of pluripotent markers Tra1-60 and OCT-4 and are karyotypically normal after 20 passages of continuous culture. In vitro and in vivo differentiation of hESC by embryoid body formation and teratoma yielded cells from the ecto-,endo-,and mesoderm lineages. VN immobilized on tissue culture polystyrene was characterized using a combination of X-ray photoemission spectroscopy,atomic force microscopy,and quantification of the VN surface density with a Bradford protein assay. Ponceau S staining was used to measure VN adsorption and desorption kinetics. Tuning the VN surface density,via the concentration of depositing solution,revealed a threshold surface density of 250 ng/cm²,which is required for hESCs attachment,proliferation,and differentiation. Cell attachment and proliferation assays on VN surface densities above this threshold show the substrate properties to be equally viable.
View Publication