Dolan ME et al. (JUL 1990)
Proceedings of the National Academy of Sciences of the United States of America 87 14 5368--72
Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents.
O6-Alkylguanine-DNA alkyltransferase was rapidly and irreversibly inactivated by exposure to O6-benzylguanine or the p-chlorobenzyl and p-methylbenzyl analogues. This inactivation was much more rapid than with O6-methylguanine: incubation with 2.5 microM O6-benzylguanine led to more than a 90% loss of activity within 10 min,whereas 0.2 mM O6-methylguanine for 60 min was required for the same reduction. O6-Benzylguanine was highly effective in depleting the alkyltransferase activity of cultured human colon tumor (HT29) cells. Complete loss of activity was produced within 15 min after addition of O6-benzylguanine to the culture medium and a maximal effect was obtained with 5 microM. In contrast,at least 100 microM O6-methylguanine for 4 hr was needed to get a maximal effect,and this reduced the alkyltransferase by only 80%. Pretreatment of HT29 cells with 10 microM O6-benzylguanine for 2 hr led to a dramatic increase in the cytotoxicity produced by the chemotherapeutic agents 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) or 2-chloroethyl(methysulfonyl)methanesulfonate (Clomesone). Administration of O6-benzylguanine to mice at a dose of 10 mg/kg reduced alkyltransferase levels by more than 95% in both liver and kidney. These results indicate that depletion of the alkyltransferase by O6-benzylguanine may be used to investigate the role of the DNA repair protein in carcinogenesis and mutagenesis and that this treatment may be valuable to increase the chemotherapeutic effectiveness of chloroethylating agents.
View Publication
Hirano I et al. (AUG 2009)
The Journal of biological chemistry 284 33 22155--65
Depletion of Pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 by Bcr-Abl promotes chronic myelogenous leukemia cell proliferation through continuous phosphorylation of Akt isoforms.
The constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway commonly occurs in cancers and is a crucial event in tumorigenesis. Chronic myelogenous leukemia (CML) is characterized by a reciprocal chromosomal translocation (9;22) that generates the Bcr-Abl fusion gene. The PI3K/Akt pathway is activated by Bcr-Abl chimera protein and mediates the leukemogenesis in CML. However,the mechanism by which Bcr-Abl activates the PI3K/Akt pathway is not completely understood. In the present study,we found that pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1 and PHLPP2) were depleted in CML cells. We investigated the interaction between PHLPPs and Bcr-Abl in CML cell lines and Bcr-Abl+ progenitor cells from CML patients. The Abl kinase inhibitors and depletion of Bcr-Abl induced the expression of PHLPP1 and PHLPP2,which dephosphorylated Ser-473 on Akt1,-2,and -3,resulting in inhibited proliferation of CML cells. The reduction of PHLPP1 and PHLPP2 expression by short interfering RNA in CML cells weakened the Abl kinase inhibitor-mediated inhibition of proliferation. In colony-forming unit-granulocyte,erythroid,macrophage,megakaryocyte; colony-forming unit-granulocyte,macrophage; and burst-forming unit-erythroid,treatment with the Abl kinase inhibitors and depletion of Bcr-Abl induced PHLPP1 and PHLPP2 expression and inhibited colony formation of Bcr-Abl+ progenitor cells,whereas depletion of PHLPP1 and PHLPP2 weakened the inhibition of colony formation activity by the Abl kinase inhibitors in Bcr-Abl+ progenitor cells. Thus,Bcr-Abl represses the expression of PHLPP1 and PHLPP2 and continuously activates Akt1,-2,and -3 via phosphorylation on Ser-473,resulting in the proliferation of CML cells.
View Publication
Dirlam A et al. (DEC 2007)
Molecular and cellular biology 27 24 8713--28
Deregulated E2f-2 underlies cell cycle and maturation defects in retinoblastoma null erythroblasts.
By assessing the contribution of deregulated E2F activity to erythroid defects in Rb null mice,we have identified E2f-2 as being upregulated in end-stage red cells,where we show it is the major pRb-associated E2f and the predominant E2f detected at key target gene promoters. Consistent with its expression pattern,E2f-2 loss restored terminal erythroid maturation to Rb null red cells,including the ability to undergo enucleation. Deletion of E2f-2 also extended the life span of Rb null mice despite persistent defects in placental development,indicating that deregulated E2f-2 activity in differentiating erythroblasts contributes to the premature lethality of Rb null mice. We show that the aberrant entry of Rb null erythroblasts into S phase at times in differentiation when wild-type erythroblasts are exiting the cell cycle is inhibited by E2f-2 deletion. E2f-2 loss induced cell cycle arrest in both wild-type and Rb null erythroblasts and was associated with increased DNA double-strand breaks. These results implicate deregulated E2f-2 in the cell cycle defects observed in Rb null erythroblasts and reveal a novel role for E2f-2 during terminal red blood cell differentiation. The identification of a tissue-restricted role for E2f-2 in erythropoiesis highlights the nonredundant nature of E2f transcription factor activities in cell growth and differentiation.
View Publication
Awe JP et al. (NOV 2014)
Journal of visualized experiments : JoVE 93 e52158
Derivation and characterization of a transgene-free human induced pluripotent stem cell line and conversion into defined clinical-grade conditions.
Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However,traces of potentially oncogenic genes remaining in actively transcribed regions of the genome,limit their potential for use in human therapeutic applications. Additionally,non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context. In this video,we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR),which has an advantage over less sensitive techniques previously used to detect gene expression differences. Full conversion into clinical-grade good manufacturing practice (GMP) conditions,allows human clinical relevance. Our protocol offers another methodology--provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications--for deriving GMP-grade hiPSCs,which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.
View Publication
(Jan 2025)
Cells 14 2
Derivation and Characterization of Isogenic OPA1 Mutant and Control Human Pluripotent Stem Cell Lines
Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the OPA1 gene,which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion. Within the mitochondrion,proteolytically processed OPA1 proteins form complexes to maintain membrane integrity and the respiratory chain complexity. Although OPA1 is broadly expressed,human OPA1 mutations predominantly affect retinal ganglion cells (RGCs) that are responsible for transmitting visual information from the retina to the brain. Due to the scarcity of human RGCs,DOA has not been studied in depth using the disease affected neurons. To enable studies of DOA using stem-cell-derived human RGCs,we performed CRISPR-Cas9 gene editing to generate OPA1 mutant pluripotent stem cell (PSC) lines with corresponding isogenic controls. CRISPR-Cas9 gene editing yielded both OPA1 homozygous and heterozygous mutant ESC lines from a parental control ESC line. In addition,CRISPR-mediated homology-directed repair (HDR) successfully corrected the OPA1 mutation in a DOA patient’s iPSCs. In comparison to the isogenic controls,the heterozygous mutant PSCs expressed the same OPA1 protein isoforms but at reduced levels; whereas the homozygous mutant PSCs showed a loss of OPA1 protein and altered mitochondrial morphology. Furthermore,OPA1 mutant PSCs exhibited reduced rates of oxygen consumption and ATP production associated with mitochondria. These isogenic PSC lines will be valuable tools for establishing OPA1-DOA disease models in vitro and developing treatments for mitochondrial deficiency associated neurodegeneration.
View Publication
(Jul 2025)
Bio-protocol 15 13
Derivation and Culture of Enriched Phrenic-Like Motor Neurons From Human iPSCs
The fatal motor neuron (MN) disease amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of the phrenic MNs (phMNs) controlling the activity of the diaphragm,leading to death by respiratory failure. Human experimental models to study phMNs are lacking,hindering the understanding of the mechanisms of phMN degeneration in ALS. Here,we describe a protocol to derive phrenic-like MNs from human induced pluripotent stem cells (hiPSC-phMNs) within 30 days. During spinal cord development,phMNs emerge from specific MN progenitors located in the dorsalmost MN progenitor (pMN) domain at cervical levels,under the control of a ventral-to-dorsal gradient of Sonic hedgehog (SHH) signaling and a rostro-caudal gradient of retinoic acid (RA). The method presented here uses optimized concentrations of RA and the SHH agonist purmorphamine,followed by fluorescence-activated cell sorting (FACS) of the resulting MN progenitor cells (MNPCs) based on a cell-surface protein (IGDCC3) enriched in hiPSC-phMNs. The resulting cultures are highly enriched in MNs expressing typical phMN markers. This protocol enables the generation of hiPSC-phMNs and is highly reproducible using several hiPSC lines,offering a disease-relevant system to study mechanisms of respiratory MN dysfunction. While the protocol has been validated in the context of ALS research,it can be adopted to study human phrenic MNs in other research fields where these neurons are of interest.
Key features
• This protocol generates enriched hiPSC-derived phrenic motor neuron cultures.• The protocol can be used to develop models to study human respiratory motor neuron disease.• The protocol allows the generation of phrenic motor neuron preparations with potential for motor neuron replacement strategies.• The protocol requires experience in hiPSC culturing and FACS-based cell sorting for a successful outcome.
View Publication
Sagi I et al. (APR 2016)
Nature 532 7597 107--11
Derivation and differentiation of haploid human embryonic stem cells.
Diploidy is a fundamental genetic feature in mammals,in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species,but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes,leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics,such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover,we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts,they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation,alongside reduction in absolute gene expression levels and cell size. Surprisingly,we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state,but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo,despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.
View Publication
Borchin B et al. (DEC 2013)
Stem Cell Reports 1 6 620--631
Derivation and FACS-Mediated Purification of PAX3+/PAX7+ Skeletal Muscle Precursors from Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) constitute a promising resource for use in cell-based therapies and a valuable in vitro model for studying early human development and disease. Despite significant advancements in the derivation of specific fates from hPSCs,the generation of skeletal muscle remains challenging and is mostly dependent on transgene expression. Here,we describe a method based on the use of a small-molecule GSK3?? inhibitor to derive skeletal muscle from several hPSC lines. We show that early GSK3?? inhibition is sufficient to create the conditions necessary for highly effective derivation of muscle cells. Moreover,we developed a strategy for stringent fluorescence-activated cell sorting-based purification of emerging PAX3+/PAX7+ muscle precursors that are able to differentiate in postsort cultures into mature myocytes. This transgene-free,efficient protocol provides an essential tool for producing myogenic cells for in vivo preclinical studies,in vitro screenings,and disease modeling. ?? 2013 The Authors.
View Publication
Ilic D et al. (JAN 2012)
Cytotherapy 14 September 122--8
Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions.
BACKGROUND AIMS: Human embryonic stem (hES) cells hold great potential for cell therapy and regenerative medicine because of their pluripotency and capacity for self-renewal. The conditions used to derive and culture hES cells vary between and within laboratories depending on the desired use of the cells. Until recently,stem cell culture has been carried out using feeder cells,and culture media,that contain animal products. Recent advances in technology have opened up the possibility of both xeno-free and feeder-free culture of stem cells,essential conditions for the use of stem cells for clinical purposes. To date,however,there has been limited success in achieving this aim. METHODS,RESULTS AND CONCLUSIONS: Protocols were developed for the successful derivation of two normal and three specific mutation-carrying (SMC) (Huntington's disease and myotonic dystrophy 1) genomically stable hES cell lines,and their adaptation to feeder-free culture,all under xeno-free conditions.
View Publication
Zhang L et al. (JAN 2015)
Circulation: Heart Failure 8 1 156--166
Derivation and high engraftment of patient-specific cardiomyocyte sheet using induced pluripotent stem cells generated from adult cardiac fibroblast
BACKGROUND: Induced pluripotent stem cells (iPSCs) can be differentiated into potentially unlimited lineages of cell types for use in autologous cell therapy. However,the efficiency of the differentiation procedure and subsequent function of the iPSC-derived cells may be influenced by epigenetic factors that the iPSCs retain from their tissues of origin; thus,iPSC-derived cells may be more effective for treatment of myocardial injury if the iPSCs were engineered from cardiac-lineage cells,rather than dermal fibroblasts. METHODS AND RESULTS: We show that human cardiac iPSCs (hciPSCs) can be generated from cardiac fibroblasts and subsequently differentiated into exceptionally pure (textgreater92%) sheets of cardiomyocytes (CMs). The hciPSCs passed through all the normal stages of differentiation before assuming a CM identity. When using the fibrin gel-enhanced delivery of hciPSC-CM sheets at the site of injury in infarcted mouse hearts,the engraftment rate was 31.91%+/-5.75% at Day 28 post transplantation. The hciPSC-CM in the sheet also appeared to develop a more mature,structurally aligned phenotype 28 days after transplantation and was associated with significant improvements in cardiac function,vascularity,and reduction in apoptosis. CONCLUSIONS: These data strongly support the potential of hciPSC-CM sheet transplantation for the treatment of heart with acute myocardial infarction.
View Publication
Meng G and Rancourt DE (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 69--80
Derivation and maintenance of undifferentiated human embryonic stem cells
Human embryonic stem cells (hESCs) are self-renewing,pluripotent cells derived from the inner cell mass of blastocysts,early-stage embryos,or blastomeres. hESCs can be propagated indefinitely in an undifferentiated state in vitro and have the ability to differentiate into all cell types of the body. Therefore,these cells can potentially provide an unlimited source of cells and hold promise for transplantation therapy,regenerative medicine,drug screening and discovery,and basic scientific research. Surplus human embryos donated for hESC derivation are extremely valuable,and inefficient derivation of hESCs would be a terrible waste of human embryos. Here,we describe a method for isolating hESC lines from human blastocysts with high efficiency. We also describe the methods for excising differentiated areas from partially differentiated hESC colonies and re-isolating undifferentiated hESCs from extremely differentiated hESC colonies.
View Publication
Strö et al. (APR 2010)
In vitro cellular & developmental biology. Animal 46 3-4 337--344
Derivation of 30 human embryonic stem cell lines-improving the quality
We have derived 30 human embryonic stem cell lines from supernumerary blastocysts in our laboratory. During the derivation process,we have studied new and safe method to establish good quality lines. All our human embryonic stem cell lines have been derived using human foreskin fibroblasts as feeder cells. The 26 more recent lines were derived in a medium containing serum replacement instead of fetal calf serum. Mechanical isolation of the inner cell mass using flexible metal needles was used in deriving the 10 latest lines. The lines are karyotypically normal,but culture adaptation in two lines has been observed. Our human embryonic stem cell lines are banked,and they are available for researchers.
View Publication