Deuterium labeling enables proteome-wide turnover kinetics analysis in cell culture
SummaryProtein turnover is a critical component of gene expression regulation and cellular homeostasis,yet methods for measuring turnover rates that are scalable and applicable to different models are still needed. We introduce an improved D2O (heavy water) labeling strategy to investigate the landscape of protein turnover in cell culture,with accurate calibration of per-residue deuterium incorporation in multiple cell types. Applying this method,we mapped the proteome-wide turnover landscape of pluripotent and differentiating human induced pluripotent stem cells (hiPSCs). Our analysis highlights the role of APC/C (anaphase-promoting complex/cyclosome) and SPOP (speckle-type POZ protein) degrons in the fast turnover of cell-cycle-related and DNA-binding hiPSC proteins. Upon pluripotency exit,many short-lived hiPSC proteins are depleted,while RNA-binding and -splicing proteins become hyperdynamic. The ability to identify fast-turnover proteins also facilitates secretome profiling,as exemplified in hiPSC-cardiomyocyte and primary human cardiac fibroblast analysis. This method is broadly applicable to protein turnover studies in primary,pluripotent,and transformed cells. Graphical abstract Highlights•D2O labeling measures protein turnover in primary,pluripotent,and transformed cells•D2O incorporates into multiple amino acids in vitro,including Ala,Glu,Asp,and Pro•Protein turnover analysis shows hiPSC differentiation alters fast-turnover proteins•We show application to secretome analysis in human cardiac myocytes and fibroblasts MotivationDynamic stable isotope labeling by amino acids in cell culture coupled with mass spectrometry is commonly used to measure protein turnover in cell culture but requires altering culture medium composition and may not label some peptides. We describe a simple and convenient alternative for measuring protein turnover kinetics in cultured cells by adding low-volume D2O (heavy water) to standard tissue culture media. Addressing a critical gap,we determined the number of deuterium-accessible atoms on all 20 proteinogenic amino acids across multiple cell types. This allows accurate interpretation of D2O-labeled mass spectra to measure protein turnover kinetics and secretome flux on a proteome scale. Alamillo et al. present a D2O labeling mass spectrometry method to measure protein turnover rates that is compatible with multiple cell cultures and medium formulations. The method reveals a parsimonious protein turnover landscape in human induced pluripotent stem cells and identifies hyperdynamic proteins that are unique to self-renewal states.
View Publication
H. Derricott et al. (feb 2019)
Cell and tissue research 375 2 409--424
Developing a 3D intestinal epithelium model for livestock species.
The in vitro 3D culture of intestinal epithelium is a valuable resource in the study of its function. Organoid culture exploits stem cells' ability to regenerate and produce differentiated epithelium. Intestinal organoid models from rodent or human tissue are widely available whereas large animal models are not. Livestock enteric and zoonotic diseases elicit significant morbidity and mortality in animal and human populations. Therefore,livestock species-specific models may offer novel insights into host-pathogen interactions and disease responses. Bovine and porcine jejunum were obtained from an abattoir and their intestinal crypts isolated,suspended in Matrigel,cultured,cryopreserved and resuscitated. 'Rounding' of crypts occurred followed by budding and then enlargement of the organoids. Epithelial cells were characterised using immunofluorescent staining and confocal microscopy. Organoids were successfully infected with Toxoplasma gondii or Salmonella typhimurium. This 3D organoid model offers a long-term,renewable resource for investigating species-specific intestinal infections with a variety of pathogens.
View Publication
(Oct 2024)
Cell Discovery 10
Developing an erythrocyte‒MHC-I conjugate for cancer treatment
Mature erythrocytes are known to lack major histocompatibility complex (MHC) proteins. However,the presence of MHC molecules on erythrocytes has been occasionally reported,though without a defined function. In this study,we designed erythrocyte conjugated solely with a fusion protein consisting of an antigenic peptide linked to MHC class I (MHC-I) protein,termed MHC-I‒Ery. The modified erythrocyte,decorated with the peptide derived from human papillomavirus (HPV) 16 oncoprotein E6/E7,effectively activated antigen-specific CD8+ T cells in peripheral blood mononuclear cells (PBMCs) from HPV16+ cervical cancer patients. Additionally,MHC-I‒Ery monotherapy was shown to inhibit antigen-positive tumor growth in mice. This treatment immediately activated CD8+ T cells and reduced suppressive myeloid cells in the spleen,leading to systemic anti-tumor activity. Safety and tolerability evaluations of MHC-I‒Ery in non-human primates further supported its clinical potential. Our results first demonstrated that erythrocytes equipped solely with antigen peptide‒MHC-I complexes can robustly stimulate the immune system,suggesting a novel and promising approach for advancing cancer immunotherapy.
View Publication
Lei Y et al. (JUN 2014)
Cellular and Molecular Bioengineering 7 2 172--183
Developing defined and scalable 3D culture systems for culturing human pluripotent stem cells at high densities
Human pluripotent stem cells (hPSCs) - including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) - are very promising candidates for cell therapies,tissue engineering,high throughput pharmacology screens,and toxicity testing. These applications require large numbers of high quality cells; however,scalable production of human pluripotent stem cells and their derivatives at a high density and under well-defined conditions has been a challenge. We recently reported a simple,efficient,fully defined,scalable,and good manufacturing practice (GMP) compatible 3D culture system based on a thermoreversible hydrogel for hPSC expansion and differentiation. Here,we describe additional design rationale and characterization of this system. For instance,we have determined that culturing hPSCs as a suspension in a liquid medium can exhibit lower volumetric yields due to cell agglomeration and possible shear force-induced cell loss. By contrast,using hydrogels as 3D scaffolds for culturing hPSCs reduces aggregation and may insulate from shear forces. Additionally,hydrogel-based 3D culture systems can support efficient hPSC expansion and differentiation at a high density if compatible with hPSC biology. Finally,there are considerable opportunities for future development to further enhance hydrogel-based 3D culture systems for producing hPSCs and their progeny.
View Publication
Valamehr B et al. (SEP 2011)
Regenerative medicine 6 5 623--34
Developing defined culture systems for human pluripotent stem cells.
Human pluripotent stem cells hold promising potential in many therapeutics applications including regenerative medicine and drug discovery. Over the past three decades,embryonic stem cell research has illustrated that embryonic stem cells possess two important and distinct properties: the ability to continuously self-renew and the ability to differentiate into all specialized cell types. In this article,we will discuss the continuing evolution of human pluripotent stem cell culture by examining requirements needed for the maintenance of self-renewal in vitro. We will also elaborate on the future direction of the field toward generating a robust and completely defined culture system,which has brought forth collaborations amongst biologists and engineers. As human pluripotent stem cell research progresses towards identifying solutions for debilitating diseases,it will be critical to establish a defined,reproducible and scalable culture system to meet the requirements of these clinical applications.
View Publication
Berry JD et al. (SEP 2004)
Journal of Virological Methods 120 1 87--96
Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus
There is a global need to elucidate protective antigens expressed by the SARS-coronavirus (SARS-CoV). Monoclonal antibody reagents that recognise specific antigens on SARS-CoV are needed urgently. In this report,the development and immunochemical characterisation of a panel of murine monoclonal antibodies (mAbs) against the SARS-CoV is presented,based upon their specificity,binding requirements,and biological activity. Initial screening by ELISA,using highly purified virus as the coating antigen,resulted in the selection of 103 mAbs to the SARS virus. Subsequent screening steps reduced this panel to seventeen IgG mAbs. A single mAb,F26G15,is specific for the nucleoprotein as seen in Western immunoblot while five other mAbs react with the Spike protein. Two of these Spike-specific mAbs demonstrate the ability to neutralise SARS-CoV in vitro while another four Western immunoblot-negative mAbs also neutralise the virus. The utility of these mAbs for diagnostic development is demonstrated. Antibody from convalescent SARS patients,but not normal human serum,is also shown to specifically compete off binding of mAbs to whole SARS-CoV. These studies highlight the importance of using standardised assays and reagents. These mAbs will be useful for the development of diagnostic tests,studies of SARS-CoV pathogenesis and vaccine development. ?? 2004 Elsevier B.V. All rights reserved.
View Publication
Sandströ et al. (FEB 2017)
Toxicology in vitro : an international journal published in association with BIBRA 38 124--135
Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing.
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells,the possibility of generating human in vitro models has gained interest,as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues,using neural progenitor cells derived from human embryonic stem cells. These 3D neural tissues can be maintained for two months and undergo progressive differentiation. We showed a gradual decreased expression of early neural lineage markers,paralleled by an increase in markers specific for mature neurons,astrocytes and oligodendrocytes. At the end of the two-month culture period the neural tissues not only displayed synapses and immature myelin sheaths around axons,but electrophysiological measurements also showed spontaneous activity. Neurotoxicity testing - comparing non-neurotoxic to known neurotoxic model compounds - showed an expected increase in the marker of astroglial reactivity after exposure to known neurotoxicants methylmercury and trimethyltin. Although further characterization and refinement of the model is required,these results indicate its potential usefulness for in vitro neurotoxicity testing.
View Publication
De Assuncao TM et al. (JUN 2015)
Laboratory investigation; a journal of technical methods and pathology 95 6 684--96
Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes.
Cholangiocytes are the target of a heterogeneous group of liver diseases known as the cholangiopathies. An evolving understanding of the mechanisms driving biliary development provides the theoretical underpinnings for rational development of induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs). Therefore,the aims of this study were to develop an approach to generate iDCs and to fully characterize the cells in vitro and in vivo. Human iPSC lines were generated by forced expression of the Yamanaka pluripotency factors. We then pursued a stepwise differentiation strategy toward iDCs,using precise temporal exposure to key biliary morphogens,and we characterized the cells,using a variety of morphologic,molecular,cell biologic,functional,and in vivo approaches. Morphology shows a stepwise phenotypic change toward an epithelial monolayer. Molecular analysis during differentiation shows appropriate enrichment in markers of iPSC,definitive endoderm,hepatic specification,hepatic progenitors,and ultimately cholangiocytes. Immunostaining,western blotting,and flow cytometry demonstrate enrichment of multiple functionally relevant biliary proteins. RNA sequencing reveals that the transcriptome moves progressively toward that of human cholangiocytes. iDCs generate intracellular calcium signaling in response to ATP,form intact primary cilia,and self-assemble into duct-like structures in three-dimensional culture. In vivo,the cells engraft within mouse liver,following retrograde intrabiliary infusion. In summary,we have developed a novel approach to generate mature cholangiocytes from iPSCs. In addition to providing a model of biliary differentiation,iDCs represent a platform for in vitro disease modeling,pharmacologic testing,and individualized,cell-based,regenerative therapies for the cholangiopathies.
View Publication
Suto A et al. (JUN 2008)
The Journal of experimental medicine 205 6 1369--79
Development and characterization of IL-21-producing CD4+ T cells.
It has recently been shown that interleukin (IL)-21 is produced by Th17 cells,functions as an autocrine growth factor for Th17 cells,and plays critical roles in autoimmune diseases. In this study,we investigated the differentiation and characteristics of IL-21-producing CD4(+) T cells by intracellular staining. Unexpectedly,we found that under Th17-polarizing conditions,the majority of IL-21-producing CD4(+) T cells did not produce IL-17A and -17F. We also found that IL-6 and -21 potently induced the development of IL-21-producing CD4(+) T cells without the induction of IL-4,IFN-gamma,IL-17A,or IL-17F production. On the other hand,TGF-beta inhibited IL-6- and IL-21-induced development of IL-21-producing CD4(+) T cells. IL-2 enhanced the development of IL-21-producing CD4(+) T cells under Th17-polarizing conditions. Finally,IL-21-producing CD4(+) T cells exhibited a stable phenotype of IL-21 production in the presence of IL-6,but retained the potential to produce IL-4 under Th2-polarizing conditions and IL-17A under Th17-polarizing conditions. These results suggest that IL-21-producing CD4(+) T cells exhibit distinct characteristics from Th17 cells and develop preferentially in an IL-6-rich environment devoid of TGF-beta,and that IL-21 functions as an autocrine growth factor for IL-21-producing CD4(+) T cells.
View Publication
A. Calvert and A. Brault ( 2015)
American Journal of Tropical Medicine and Hygiene 93 1338-40
Development and characterization of monoclonal antibodies directed against the nucleoprotein of heartland virus
Heartland virus (HRTV),a phlebovirus first isolated from two Missouri farmers in 2009,has been proposed to be transmitted to humans by the bite of infected Amblyomma americanum ticks. It is closely related to severe fever with thrombocytopenia syndrome virus (SFTSV) from China,another previously unrecognized phlebovirus that has subsequently been associated with hundreds of cases of severe disease in humans. To expand diagnostic capacity to detect HRTV infections,20 hybridoma clones secreting anti-HRTV murine monoclonal antibodies (MAbs) were developed using splenocytes from HRTV-inoculated AG129 alpha/beta and gamma interferon receptor-deficient mice. Nine of these MAbs were characterized herein for inclusion in future HRTV diagnostic assay development. All of the MAbs developed were found to be non-neutralizing and reactive to linear epitopes on HRTV nucleocapsid protein. MAb 2AF11 was found to be cross-reactive with SFTSV.
View Publication
Cabral TM et al. (JUL 2012)
Journal of Virological Methods 183 1 25--33
Development and characterization of neutralizing monoclonal antibodies against the pandemic H1N1 virus (2009).
The 2009 H1N1 influenza pandemic was a major international public health crisis which caused considerable morbidity and mortality worldwide. The goal of this study was to produce anti-H1 monoclonal antibodies (MAbs) for improving diagnostic immunological assays and to develop potential immunotherapeutics. Nine MAbs were produced after immunizing mice with recombinant hemagglutinin (HA) protein from A/California/06/09. Two spleenocyte myeloma fusions yielded 1588 hybridoma cultures. After screening the hybridoma culture supernatants for antibody reactivity to rHA,nine clones were selected for further characterization. Cross-reactivity studies of the anti-rHA antibodies against a panel of influenza viruses (H1-H16) revealed eight out of nine MAbs were specific to the pandemic H1 subtype,except for MAb F256G2sc1 which also cross-reacted with H5 subtype virus. All MAbs were of the IgG1κ isotype,except F256G2sc1 which was IgG2aκ. The anti-rHA MAbs had binding affinities to rHA that ranged from a K(D) (disassociation constant) of 1.34×10(-9)M (F255G7sc1) to the weakest affinity of 4.60×10(-8)M (F255G4sc1). Interestingly,in a plaque reduction neutralization assay,all MAbs except F255G3sc1 demonstrated neutralizing ability. Furthermore,all MAbs except F255G3sc1 and F255G9sc1 exhibited anti-hemagglutinin activity against pandemic H1N1 viruses,but not against classical North American swine influenza viruses of the same subtype. Immunofluorescence assay (IFA) demonstrated that all MAbs except F255G1sc1 and F255G3sc1 were able to detect 2009 pandemic H1N1 (2009) virus- infected MDCK cells. The MAbs were also evaluated for potential use in competitive ELISA (cELISA),and with the exception of F255G3sc1,all MAbs showed competitive activity with serum collected from pigs infected with pandemic H1N1 virus (2009). The developed MAbs have demonstrated utility as immunodiagnostic and research reagents,and their neutralizing capabilities also hold potential for designing antiviral drugs against pandemic influenza.
View Publication
Li J et al. (OCT 2014)
Oral Oncology 50 10 991--999
Development and characterization of salivary adenoid cystic carcinoma cell line
OBJECTIVE To develop in vitro adenoid cystic carcinoma cell line as a surrogate for functional studies. MATERIALS AND METHODS Cells obtained from a primary ACC of the base of tongue were cultivated in vitro and immortalized with h-TERT. Morphologic,cytogenetic and functional studies were performed. RESULTS Tumor cells were verified by positive reactions to keratin and smooth muscle actin and phenotypic cellular and nuclear features. In-vitro cell growth and colony formation assay supported their tumor nature. CONCLUSION We authenticated an ACC cell line with hybrid epithelial-myoepithelial feature as a resource for functional experimentation.
View Publication