Garcia-Bates TM et al. (MAR 2016)
Journal of immunology (Baltimore,Md. : 1950) 196 6 2870--8
Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1.
The incidence of human papillomavirus (HPV)-related head and neck squamous cell carcinoma has increased in recent decades,though HPV prevention vaccines may reduce this rise in the future. HPV-related cancers express the viral oncoproteins E6 and E7. The latter inactivates the tumor suppressor protein retinoblastoma (Rb),which leads to the overexpression of p16(INK4) protein,providing unique Ags for therapeutic HPV-specific cancer vaccination. We developed potential adenoviral vaccines that express a fusion protein of HPV-16 E6 and E7 (Ad.E6E7) alone or fused with p16 (Ad.E6E7p16) and also encoding an anti-programmed death (PD)-1 Ab. Human monocyte-derived dendritic cells (DC) transduced with Ad.E6E7 or Ad.E6E7p16 with or without Ad.αPD1 were used to activate autologous CD8 CTL in vitro. CTL responses were tested against naturally HPV-infected head and neck squamous cell carcinoma cells using IFN-γ ELISPOT and [(51)Cr]release assay. Surprisingly,stimulation and antitumor activity of CTL were increased after incubation with Ad.E6E7p16-transduced DC (DC.E6E7p16) compared with Ad.E6E7 (DC.E6E7),a result that may be due to an effect of p16 on cyclin-dependent kinase 4 levels and IL-12 secretion by DC. Moreover,the beneficial effect was most prominent when anti-PD-1 was introduced during the second round of stimulation (after initial priming). These data suggest that careful sequencing of Ad.E6E7.p16 with Ad.αPD1 could improve antitumor immunity against HPV-related tumors and that p16 may enhance the immunogenicity of DC,through cyclin-dependent pathways,Th1 cytokine secretion,and by adding a nonviral Ag highly overexpressed in HPV-induced cancers.
View Publication
Reference
Bassa LM et al. (JAN 2016)
Phytomedicine : international journal of phytotherapy and phytopharmacology 23 1 87--94
Rhodiola crenulata induces an early estrogenic response and reduces proliferation and tumorsphere formation over time in MCF7 breast cancer cells.
BACKGROUND Rhodiola crenulata is a Tibetan mountainous plant,commonly used in Eastern alternative medicine. Many phytochemicals possess estrogenic activity,a critical regulator of proliferation in mammary epithelial cells. We have previously characterized anti-cancer properties of R. crenulata in aggressive triple negative breast cancer cells,lacking the expression of estrogen receptor. Currently,it is unknown whether R. crenulata exerts estrogenic effects and as such consumption may be a concern for women with estrogen receptor positive breast cancer that use Rhodiola sp. to relieve mild to moderate depression. PURPOSE In this study,we wished to determine whether a hydroalcoholic fraction of the R. crenulata root extract exhibits estrogenic activity in estrogen receptor positive (ER+) breast cancer cells in vitro and whether it affects normal mammary epithelial ER target gene expression in vivo. METHODS ER transcriptional activity was analyzed in MCF7 cells expressing an ERE reporter construct and confirmed via qPCR of endogenous ER target genes. We also monitored cellular proliferation over time. Additionally,to assess stem-like properties in MCF7 cells,we performed a tumorsphere formation assay under anchorage independent conditions. We examined whether R. crenulata treatment reduced $$-catenin levels via Western blotting and measured $$-catenin transcriptional activity by a reporter assay. To examine the effects of R. crenulata on normal mammary epithelial cells,we performed immunohistochemical staining of ER and PR in the mammary glands of mice fed R. crenulata for 12 weeks. RESULTS We show an initial activation of ER transcriptional activity by dual reporter assay,qPCR and proliferation of MCF7 ER+ cells in response to 24 h of R. crenulata treatment. However,upon longer treatment basal and R. crenulata induced transcriptional activity was suppressed. There was a decrease in cell doubling times and a decrease in tumorsphere formation. In association with these changes,ER$$ transcript levels were decreased and active $$-catenin levels were reduced in the cells treated for 2 weeks. Finally,we show no change in estrogen targets in normal mammary cells in vivo. CONCLUSION These data suggest that the R. crenulata extract contains components with estrogenic activity. However,R. crenulata treatment could still be protective in ER+ breast cancer cells,as longer treatment reduced the transcriptional activity of $$-catenin and ER responses leading to reduced proliferation and tumorsphere formation. Furthermore,administration of 20 mg/kg/day R. crenulata to mice did not have an observable effect on mammary epithelial ER$$ target gene expression in vivo.
View Publication
Reference
He X et al. (MAY 2016)
Nucleic acids research 44 9 e85
Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which,however,has focused on HDR-based strategies and was proven inefficient. Here,we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs,and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy,integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells,and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells.
View Publication
Reference
Takayama Y and Kida YS (FEB 2016)
PloS one 11 2 e0148559
In Vitro Reconstruction of Neuronal Networks Derived from Human iPS Cells Using Microfabricated Devices.
Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues,which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases,appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study,we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS) cell derived peripheral nervous system (PNS) and central nervous system (CNS),or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally,calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next,we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs,and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions.
View Publication
Reference
Zahedi A et al. (FEB 2016)
PLoS ONE 11 2 e0148642
Evaluating cell processes, quality, and biomarkers in pluripotent stem cells using video bioinformatics
There is a foundational need for quality control tools in stem cell laboratories engaged in basic research,regenerative therapies,and toxicological studies. These tools require automated methods for evaluating cell processes and quality during in vitro passaging,expansion,maintenance,and differentiation. In this paper,an unbiased,automated high-content profiling toolkit,StemCellQC,is presented that non-invasively extracts information on cell quality and cellular processes from time-lapse phase-contrast videos. Twenty four (24) morphological and dynamic features were analyzed in healthy,unhealthy,and dying human embryonic stem cell (hESC) colonies to identify those features that were affected in each group. Multiple features differed in the healthy versus unhealthy/dying groups,and these features were linked to growth,motility,and death. Biomarkers were discovered that predicted cell processes before they were detectable by manual observation. StemCellQC distinguished healthy and unhealthy/dying hESC colonies with 96% accuracy by non-invasively measuring and tracking dynamic and morphological features over 48 hours. Changes in cellular processes can be monitored by StemCellQC and predictions can be made about the quality of pluripotent stem cell colonies. This toolkit reduced the time and resources required to track multiple pluripotent stem cell colonies and eliminated handling errors and false classifications due to human bias. StemCellQC provided both user-specified and classifier-determined analysis in cases where the affected features are not intuitive or anticipated. Video analysis algorithms allowed assessment of biological phenomena using automatic detection analysis,which can aid facilities where maintaining stem cell quality and/or monitoring changes in cellular processes are essential. In the future StemCellQC can be expanded to include other features,cell types,treatments,and differentiating cells.
View Publication
Reference
Bidinosti M et al. (MAR 2016)
Science (New York,N.Y.) 351 6278 1199--1203
CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency.
SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS),including a high risk of autism spectrum disorder (ASD). We used unbiased,quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit,B56β,due to increased steady-state levels of its kinase,Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.
View Publication
Reference
Wang R et al. (DEC 2015)
BMC cancer 16 1 56
Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells.
BACKGROUND Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus,tumor-initiating cell-like cells are generated. METHODS We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR,flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. RESULTS We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. CONCLUSIONS Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.
View Publication
Reference
Xia N et al. (FEB 2016)
Scientific Reports 6 20270
Transcriptional comparison of human induced and primary midbrain dopaminergic neurons
Generation of induced dopaminergic (iDA) neurons may provide a significant step forward towards cell replacement therapy for Parkinson's disease (PD). To study and compare transcriptional programs of induced cells versus primary DA neurons is a preliminary step towards characterizing human iDA neurons. We have optimized a protocol to efficiently generate iDA neurons from human pluripotent stem cells (hPSCs). We then sequenced the transcriptomes of iDA neurons derived from 6 different hPSC lines and compared them to that of primary midbrain (mDA) neurons. We identified a small subset of genes with altered expression in derived iDA neurons from patients with Parkinson's Disease (PD). We also observed that iDA neurons differ significantly from primary mDA neurons in global gene expression,especially in genes related to neuron maturation level. Results suggest iDA neurons from patient iPSCs could be useful for basic and translational studies,including in vitro modeling of PD. However,further refinement of methods of induction and maturation of neurons may better recapitulate full development of mDA neurons from hPSCs.
View Publication
Reference
Wang J et al. (DEC 2016)
Molecular brain 9 1 12
Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway.
BACKGROUND Protection of cerebral endothelial cells (ECs) from hypoxia/reoxygenation (H/R)-induced injury is an important strategy for treating ischemic stroke. In this study,we investigated whether co-culture with endothelial progenitor cells (EPCs) and neural progenitor cells (NPCs) synergistically protects cerebral ECs against H/R injury and the underlying mechanism. RESULTS EPCs and NPCs were respectively generated from inducible pluripotent stem cells. Human brain ECs were used to produce an in vitro H/R-injury model. Data showed: 1) Co-culture with EPCs and NPCs synergistically inhibited H/R-induced reactive oxygen species (ROS) over-production,apoptosis,and improved the angiogenic and barrier functions (tube formation and permeability) in H/R-injured ECs. 2) Co-culture with NPCs up-regulated the expression of vascular endothelial growth factor receptor 2 (VEGFR2). 3) Co-culture with EPCs and NPCs complementarily increased vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in conditioned medium,and synergistically up-regulated the expression of p-Akt/Akt and p-Flk1/VEGFR2 in H/R-injured ECs. 4) Those effects could be decreased or abolished by inhibition of both VEGFR2 and tyrosine kinase B (TrkB) or phosphatidylinositol-3-kinase (PI3K). CONCLUSIONS Our data demonstrate that EPCs and NPCs synergistically protect cerebral ECs from H/R-injury,via activating the PI3K/Akt pathway which mainly depends on VEGF and BDNF paracrine.
View Publication
Reference
Yan Y et al. (FEB 2015)
1341 257--284
Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor
Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening,disease modeling,and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture,such as a stirred bioreactor,are generally considered as promising approaches to produce the required cells. Recently,suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling,showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification,3-D neural tissue development,or potential preclinical studies or clinical applications in neurological diseases.
View Publication
Reference
Roybal KT et al. (FEB 2016)
Cell 164 4 770--9
Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits.
T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach,however,is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here,we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT."
View Publication
Reference
Llibre A et al. (MAR 2016)
Journal of Immunology 196 5 2085--94
LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation.
Germinal centers (GCs) are microanatomical structures critical for the development of high-affinity Abs and B cell memory. They are organized into two zones,light and dark,with coordinated roles,controlled by local signaling. The innate lectin-like transcript 1 (LLT1) is known to be expressed on B cells,but its functional role in the GC reaction has not been explored. In this study,we report high expression of LLT1 on GC-associated B cells,early plasmablasts,and GC-derived lymphomas. LLT1 expression was readily induced via BCR,CD40,and CpG stimulation on B cells. Unexpectedly,we found high expression of the LLT1 ligand,CD161,on follicular dendritic cells. Triggering of LLT1 supported B cell activation,CD83 upregulation,and CXCR4 downregulation. Overall,these data suggest that LLT1-CD161 interactions play a novel and important role in B cell maturation within the GC in humans.
View Publication