Kunova M et al. (NOV 2010)
Reproductive biomedicine online 21 5 676--86
Development of humanized culture medium with plant-derived serum replacement for human pluripotent stem cells.
For human embryonic stem cells (ESC) to be used in cell replacement therapies,they must be grown under good manufacturing conditions in a chemically defined medium that lacks animal proteins. This study examined the ability of a newly designed medium containing the plant-derived serum replacement VegetaCell and other reagents of human origin to support undifferentiated growth and pluripotency of human ESC. This medium was tested in several culture systems,using human fibroblasts as a feeder layer or Matrigel in a feeder-free culture. Even under the most stringent feeder-free conditions without conditioned medium,human ESC exhibited an undifferentiated morphology,expressed markers of undifferentiated cells,demonstrated high alkaline phosphatase activity and multilineage differentiation and retained a normal karyotype. Compared with human ESC grown in standard culture conditions,human ESC maintained in humanized VegetaCell medium show longer cell cycles and decreased cell death. The availability of an animal protein-free medium supplemented with the low-cost VegetaCell reagent expands the repertoire of media for culturing human ESC as well as induced pluripotent stem cells for drug testing and cell replacement therapy.
View Publication
Stern HM et al. (MAR 2010)
Clinical Cancer Research 16 5 1587--96
Development of immunohistochemistry assays to assess GALNT14 and FUT3/6 in clinical trials of dulanermin and drozitumab
PURPOSE: In vitro sensitivity to the proapoptotic receptor agonists dulanermin (rhApo2L/TRAIL) and drozitumab (DR5-agonist antibody) is strongly predicted by the expression of the O-glycosylation enzymes GALNT14 in non-small cell lung cancer (NSCLC) cell lines (among others) and of FUT3/6 in colorectal cancer (CRC) cell lines. We developed immunohistochemistry (IHC) assays that measure GALNT14 and FUT3/6 levels in archival formalin-fixed,paraffin-embedded human tumor tissue to determine marker prevalence in NSCLC and CRC tissue and to enable the future examination of these markers in clinical trials. EXPERIMENTAL DESIGN: GALNT14 or FUT3/6 ELISA-positive hybridoma clones were screened through IHC on cell pellets with known mRNA levels. The specificity of staining was examined in cell lines,normal tissue,and tumor tissue. RESULTS: GALNT14 and FUT3/6 IHC exhibited a golgi staining pattern and correlated with GALNT14 and FUT3/6 (but not GALNT2 and FUT4) mRNA expression levels in cell lines and normal tissues,suggesting specificity. GALNT14 and FUT3/6 H-scores were significantly higher in cell lines sensitive to dulanermin (P = 0.01 and P = 0.0004,respectively) and drozitumab (P = 0.03 and P textless 0.0001,respectively) versus resistant cell lines. GALNT14 and FUT3/6 H-scores varied widely,with approximately 45% of NSCLC samples exhibiting weak to moderate GALNT14 staining (H-score of at least 25) and 70% of CRC samples exhibiting moderate to strong FUT3/6 staining (H-score of at least 125). CONCLUSIONS: GALNT14 and FUT3/6 expression can be assessed in human tumors using sensitive and specific IHC assays. Both assays are being deployed in ongoing clinical trials of dulanermin and drozitumab to assess potential utility for patient selection.
View Publication
C. A. Hamilton et al. ( 2018)
Veterinary research 49 1 54
Development of in vitro enteroids derived from bovine small intestinal crypts.
Cattle are an economically important domestic animal species. In vitro 2D cultures of intestinal epithelial cells or epithelial cell lines have been widely used to study cell function and host-pathogen interactions in the bovine intestine. However,these cultures lack the cellular diversity encountered in the intestinal epithelium,and the physiological relevance of monocultures of transformed cell lines is uncertain. Little is also known of the factors that influence cell differentiation and homeostasis in the bovine intestinal epithelium,and few cell-specific markers that can distinguish the different intestinal epithelial cell lineages have been reported. Here we describe a simple and reliable procedure to establish in vitro 3D enteroid,or mini gut" cultures from bovine small intestinal (ileal) crypts. These enteroids contained a continuous central lumen lined with a single layer of polarized enterocytes bound by tight junctions with abundant microvilli on their apical surfaces. Histological and transcriptional analyses suggested that the enteroids comprised a mixed population of intestinal epithelial cell lineages including intestinal stem cells enterocytes Paneth cells goblet cells and enteroendocrine cells. We show that bovine enteroids can be successfully maintained long-term through multiple serial passages without observable changes to their growth characteristics morphology or transcriptome. Furthermore the bovine enteroids can be cryopreserved and viable cultures recovered from frozen stocks. Our data suggest that these 3D bovine enteroid cultures represent a novel physiologically-relevant and tractable in vitro system in which epithelial cell differentiation and function and host-pathogen interactions in the bovine small intestine can be studied."
View Publication
M. Holliday et al. ( 2018)
Stem cell research 33 269--273
Development of induced pluripotent stem cells from a patient with hypertrophic cardiomyopathy who carries the pathogenic myosin heavy chain 7 mutation p.Arg403Gln.
Hypertrophic cardiomyopathy (HCM) is an inherited cardiomyopathy characterized by left ventricular hypertrophy ≥15 mm in the absence of loading conditions. HCM has a prevalence of up to one in 200,and can result in significant adverse outcomes including heart failure and sudden cardiac death. An induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells obtained from the whole blood of a 38-year-old female patient with HCM in which genetic testing identified the well-known pathogenic p.Arg403Gln mutation in myosin heavy chain 7. iPSCs express pluripotency markers,demonstrate trilineage differentiation capacity,and display a normal 46,XX female karyotype. This resource will allow further assessment of the pathophysiological development of HCM.
View Publication
Wang W et al. (MAR 2017)
Stem cells and development 26 6 394--404
Development of Islet Organoids from H9 Human Embryonic Stem Cells in Biomimetic 3D Scaffolds.
Success in the differentiating human embryonic stem cells (hESCs) into insulin-secreting β cells raises new hopes for diabetes treatment. In this work,we demonstrated the feasibility of developing islet organoids from hESCs within biomimetic 3D scaffolds. We showed that such a 3D microenvironment is critical to the generation of pancreatic endoderm and endocrine from hESCs. The organoids formed consisted of pancreatic α,β,δ,and pancreatic polypeptide (PP) cells. A high-level co-expression of PDX1,NKX6.1,and NGN3 in these cells suggests the characteristics of pancreatic β cells. More importantly,most insulin-secreting cells generated did not express glucagon,somatostatin,or PP. The expression of mature β cell marker genes such as Pdx1,Ngn3,Insulin,MafA,and Glut2 was detected in these 3D-induced cell clusters. A high-level expression of C-peptide confirmed the de novo endogenous insulin production in these 3D induced cells. Insulin-secretory granules,an indication of β cell maturity,were detected in these cells as well. Glucose challenging experiments suggested that these cells are sensitive to glucose levels due to their elevated maturity. Exposing the cells to a high concentration of glucose induced a sharp increase in insulin secretion.
View Publication
A. Renner et al. (Apr 2024)
Gene Therapy 31 7-8
Development of KoRV-pseudotyped lentiviral vectors for efficient gene transfer into freshly isolated immune cells
Allogeneic cell therapies,such as those involving macrophages or Natural Killer (NK) cells,are of increasing interest for cancer immunotherapy. However,the current techniques for genetically modifying these cell types using lenti- or gamma-retroviral vectors present challenges,such as required cell pre-activation and inefficiency in transduction,which hinder the assessment of preclinical efficacy and clinical translation. In our study,we describe a novel lentiviral pseudotype based on the Koala Retrovirus (KoRV) envelope protein,which we identified based on homology to existing pseudotypes used in cell therapy. Unlike other pseudotyped viral vectors,this KoRV-based envelope demonstrates remarkable efficiency in transducing freshly isolated primary human NK cells directly from blood,as well as freshly obtained monocytes,which were differentiated to M1 macrophages as well as B cells from multiple donors,achieving up to 80% reporter gene expression within three days post-transduction. Importantly,KoRV-based transduction does not compromise the expression of crucial immune cell receptors,nor does it impair immune cell functionality,including NK cell viability,proliferation,cytotoxicity as well as phagocytosis of differentiated macrophages. Preserving immune cell functionality is pivotal for the success of cell-based therapeutics in treating various malignancies. By achieving high transduction rates of freshly isolated immune cells before expansion,our approach enables a streamlined and cost-effective automated production of off-the-shelf cell therapeutics,requiring fewer viral particles and less manufacturing steps. This breakthrough holds the potential to significantly reduce the time and resources required for producing e.g. NK cell therapeutics,expediting their availability to patients in need. Subject terms: Genetic transduction,Tumour immunology,Immunotherapy,Genetic vectors,Innate immune cells
View Publication
(Jun 2025)
APL Bioengineering 9 2
Development of large-scale gastruloid array to identify aberrant developmental phenotypes
Adherent two-dimensional human gastruloids have provided insights into early human embryogenesis. Even though the model system is highly reproducible,no available automated technology can screen and sort large numbers of these near-millimeter-sized complex structures for large-scale assays. Here,we developed a microraft array-based technology to perform image-based assays of large numbers of fixed or living gastruloids and sort individual gastruloids for downstream assays,such as gene expression analysis. Arrays of 529 indexed magnetic microrafts each (789?µm side length) possessing flat surfaces were photopatterned with a central circular region (500?µm diameter) of extracellular matrix with an accuracy of 93?±?1% to form a single gastruloid on each raft. An image analysis pipeline extracted features from transmitted light and fluorescence images of the gastruloids. The large microrafts were released and collected by an automated sorting system with efficiencies of 98?±?4% and 99?±?2%,respectively. The microraft array platform was used to assay individual euploid and aneuploid (possessing abnormal numbers of chromosomes) gastruloids with clear phenotypic differences. Aneuploid gastruloids displayed significantly less DNA/area than euploid gastruloids. However,even gastruloids with the same condition displayed significant heterogeneity. Both noggin (NOG) and keratin 7 (KRT7),two genes involved in spatial patterning within gastruloids,were upregulated in aneuploid relative to that in the euploid gastruloids. Moreover,relative NOG and KRT7 expressions were negatively correlated with DNA/area. The microraft arrays will empower novel screens of single gastruloids for a better understanding of key mechanisms underlying phenotypic differences between gastruloids.
View Publication
Yamaji D et al. (OCT 2009)
Genes & development 23 20 2382--7
Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A.
Mammary alveologenesis is abrogated in the absence of the transcription factors STAT5A/5B,which mediate cytokine signaling. To reveal the underlying causes for this developmental block,we studied mammary stem and progenitor cells. While loss of STAT5A/5B did not affect the stem cell population and its ability to form mammary ducts,luminal progenitors were greatly reduced and unable to form alveoli during pregnancy. Temporally controlled expression of transgenic STAT5A in mammary epithelium lacking STAT5A/5B restored the luminal progenitor population and rescued alveologenesis in a reversible fashion in vivo. Thus,STAT5A is necessary and sufficient for the establishment of luminal progenitor cells.
View Publication
Okabe S et al. (SEP 1996)
Mechanisms of development 59 1 89--102
Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro.
To understand the mechanism of the sequential restriction of multipotency of stem cells during development,we have established culture conditions that allow the differentiation of neuroepithelial precursor cells from embryonic stem (ES) cells. A highly enriched population of neuroepithelial precursor cells derived from ES cells proliferates in the presence of basic fibroblast growth factor (bFGF). These cells differentiate into both neurons and glia following withdrawal of bFGF. By further differentiating the cells in serum-containing medium,the neurons express a wide variety of neuron-specific genes and generate both excitatory and inhibitory synaptic connections. The expression pattern of position-specific neural markers suggests the presence of a variety of central nervous system (CNS) neuronal cell types. These findings indicate that neuronal precursor cells can be isolated from ES cells and that these cells can efficiently differentiate into functional post-mitotic neurons of diverse CNS structures.
View Publication
Ma X et al. ( 2012)
Journal of biomedicine & biotechnology 2012 741416
Development of new technologies for stem cell research.
Since the 1960s,the stem cells have been extensively studied including embryonic stem cells,neural stem cells,bone marrow hematopoietic stem cells,and mesenchymal stem cells. In the recent years,several stem cells have been initially used in the treatment of diseases,such as in bone marrow transplant. At the same time,isolation and culture experimental technologies for stem cell research have been widely developed in recent years. In addition,molecular imaging technologies including optical molecular imaging,positron emission tomography,single-photon emission computed tomography,and computed tomography have been developed rapidly in recent the 10 years and have also been used in the research on disease mechanism and evaluation of treatment of disease related with stem cells. This paper will focus on recent typical isolation,culture,and observation techniques of stem cells followed by a concise introduction. Finally,the current challenges and the future applications of the new technologies in stem cells are given according to the understanding of the authors,and the paper is then concluded.
View Publication
(Feb 2024)
Nature Communications 15
Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies
Ex vivo cellular system that accurately replicates sickle cell disease and β-thalassemia characteristics is a highly sought-after goal in the field of erythroid biology. In this study,we present the generation of erythroid progenitor lines with sickle cell disease and β-thalassemia mutation using CRISPR/Cas9. The disease cellular models exhibit similar differentiation profiles,globin expression and proteome dynamics as patient-derived hematopoietic stem/progenitor cells. Additionally,these cellular models recapitulate pathological conditions associated with both the diseases. Hydroxyurea and pomalidomide treatment enhanced fetal hemoglobin levels. Notably,we introduce a therapeutic strategy for the above diseases by recapitulating the HPFH3 genotype,which reactivates fetal hemoglobin levels and rescues the disease phenotypes,thus making these lines a valuable platform for studying and developing new therapeutic strategies. Altogether,we demonstrate our disease cellular systems are physiologically relevant and could prove to be indispensable tools for disease modeling,drug screenings and cell and gene therapy-based applications. Sickle cell disease (SCD) and β-thalassemia (BT) are globally prevalent inherited blood disorders but,despite extensive research,no ex vivo system exists for SCD and BT. Here,the authors generate pathophysiologically relevant erythroid progenitor models of SCD and BT.
View Publication
Pereira WdO et al. (OCT 2013)
BMC research notes 6 433
Development of plasma cell myeloma in a B-cell chronic lymphocytic leukemia patient with chromosome 12 trisomy.
BACKGROUND Cancer development results from the progressive accumulation of genomic abnormalities that culminate in the neoplastic phenotype. Cytogenetic alterations,mutations and rearrangements may be considered as molecular legacy which trace the clonal history of the disease. Concomitant tumors are reported and they may derive from a common or divergent founder clone. B-cell chronic lymphocytic leukemia (B-CLL) and plasma cell myeloma (PCM) are both mature B-cell neoplasms,and their concomitancy,albeit rare,is documented. CASE PRESENTATION Here,we described a patient with prior B-CLL with secondary development of PCM. Cytogenetic and multi parametric flow cytometry analyses were performed. The B-CLL population presented chromosome 12 trisomy,unlikely the arisen PCM population. CONCLUSION The close follow up of B-CLL patients is important for early intervention in case of development of other malignancy,such as myeloma. Our observation suggests these two diseases may have arisen from different clones. We understand that the investigation of clonal origin may provide important information regarding therapeutic decisions,and should be considered in concomitant neoplasm.
View Publication