MicroRNA Regulates Hepatocytic Differentiation of Progenitor Cells by Targeting YAP1
MicroRNA expression profiling in human liver progenitor cells following hepatocytic differentiation identified miR-122 and miR-194 as the microRNAs most strongly upregulated during hepatocytic differentiation of progenitor cells. MiR-194 was also highly upregulated following hepatocytic differentiation of human embryonic stem cells (hESCs). Overexpression of miR-194 in progenitor cells accelerated their differentiation into hepatocytes,as measured by morphological features such as canaliculi and expression of hepatocytic markers. Overexpression of miR-194 in hESCs induced their spontaneous differentiation,a phenotype accompanied with accelerated loss of the pluripotent factors OCT4 and NANOG and decrease in mesoderm marker HAND1 expression. We then identified YAP1 as a direct target of miR-194. Inhibition of YAP1 strongly induced hepatocytic differentiation of progenitor cells and YAP1 overexpression reversed the miR-194-induced hepatocytic differentiation of progenitor cells. In conclusion,we identified miR-194 as a potent inducer of hepatocytic differentiation of progenitor cells and further identified YAP1 as a mediator of miR-194's effects on hepatocytic differentiation and liver progenitor cell fate. Stem Cells 2016;34:1284-1296.
View Publication
Reference
Liu J et al. (JAN 2016)
Translational Psychiatry 6 1 e703
CRISPR/Cas9 facilitates investigation of neural circuit disease using human iPSCs: mechanism of epilepsy caused by an SCN1A loss-of-function mutation
Mutations in SCN1A,the gene encoding the α subunit of Nav1.1 channel,can cause epilepsies with wide ranges of clinical phenotypes,which are associated with the contrasting effects of channel loss-of-function or gain-of-function. In this project,CRISPR/Cas9- and TALEN-mediated genome-editing techniques were applied to induced pluripotent stem cell (iPSC)-based-disease model to explore the mechanism of epilepsy caused by SCN1A loss-of-function mutation. By fluorescently labeling GABAergic subtype in iPSC-derived neurons using CRISPR/Cas9,we for the first time performed electrophysiological studies on SCN1A-expressing neural subtype and monitored the postsynaptic activity of both inhibitory and excitatory types. We found that the mutation c.A5768G,which led to no current of Nav1.1 in exogenously transfected system,influenced the properties of not only Nav current amount,but also Nav activation in Nav1.1-expressing GABAergic neurons. The two alterations in Nav further reduced the amplitudes and enhanced the thresholds of action potential in patient-derived GABAergic neurons,and led to weakened spontaneous inhibitory postsynaptic currents (sIPSCs) in the patient-derived neuronal network. Although the spontaneous excitatory postsynaptic currents (sEPSCs) did not change significantly,when the frequencies of both sIPSCs and sEPSCs were further analyzed,we found the whole postsynaptic activity transferred from the inhibition-dominated state to excitation in patient-derived neuronal networks,suggesting that changes in sIPSCs alone were sufficient to significantly reverse the excitatory level of spontaneous postsynaptic activity. In summary,our findings fill the gap of our knowledge regarding the relationship between SCN1A mutation effect recorded on exogenously transfected cells and on Nav1.1-expressing neurons,and reveal the physiological basis underlying epileptogenesis caused by SCN1A loss-of-function mutation.
View Publication
Reference
Suzuki S et al. (JAN 2016)
Molecular therapy. Nucleic acids 5 1 e273
TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs.
Cystic fibrosis (CF) is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs) have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs) and sequence-specific TALENs. An allele-specific PCR,cyclic enrichment strategy gave ˜100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that,when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt) airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways.
View Publication
Reference
Cao H et al. (JAN 2015)
Molecular therapy. Methods & clinical development 2 15034
Testing gene therapy vectors in human primary nasal epithelial cultures.
Cystic fibrosis (CF) results from mutations in the CF transmembrane conductance regulator (CFTR) gene,which codes for a chloride/bicarbonate channel in the apical epithelial membranes. CFTR dysfunction results in a multisystem disease including the development of life limiting lung disease. The possibility of a cure for CF by replacing defective CFTR has led to different approaches for CF gene therapy; all of which ultimately have to be tested in preclinical model systems. Primary human nasal epithelial cultures (HNECs) derived from nasal turbinate brushing were used to test the efficiency of a helper-dependent adenoviral (HD-Ad) vector expressing CFTR. HD-Ad-CFTR transduction resulted in functional expression of CFTR at the apical membrane in nasal epithelial cells obtained from CF patients. These results suggest that HNECs can be used for preclinical testing of gene therapy vectors in CF.
View Publication
Reference
Venkatesh P et al. (JAN 2016)
International Journal of Molecular Sciences 17 1 58
Effect of chromatin structure on the extent and distribution of DNA double strand breaks produced by ionizing radiation; comparative study of hESC and differentiated cells lines
Chromatin structure affects the extent of DNA damage and repair. Thus,it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here,we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC,heterochromatin is confined to distinct regions,while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives,normal human fibroblasts; and one cancer cell line. At the same time,the number of DNA repair foci were not statistically different among these cells. We showed that in hESC,DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells,and to a lesser extent in IMR90 normal fibroblasts,but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.
View Publication
Reference
Laumont C et al. (JAN 2016)
Nature Communications 7 10238
Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames.
In view of recent reports documenting pervasive translation outside of canonical protein-coding sequences,we wished to determine the proportion of major histocompatibility complex (MHC) class I-associated peptides (MAPs) derived from non-canonical reading frames. Here we perform proteogenomic analyses of MAPs eluted from human B cells using high-throughput mass spectrometry to probe the six-frame translation of the B-cell transcriptome. We report that ∼ 10% of MAPs originate from allegedly noncoding genomic sequences or exonic out-of-frame translation. The biogenesis and properties of these 'cryptic MAPs' differ from those of conventional MAPs. Cryptic MAPs come from very short proteins with atypical C termini,and are coded by transcripts bearing long 3'UTRs enriched in destabilizing elements. Relative to conventional MAPs,cryptic MAPs display different MHC class I-binding preferences and harbour more genomic polymorphisms,some of which are immunogenic. Cryptic MAPs increase the complexity of the MAP repertoire and enhance the scope of CD8 T-cell immunosurveillance.
View Publication
Reference
Malhotra D et al. (FEB 2016)
Nature Immunology 17 2 187--95
Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns.
Studies of repertoires of mouse monoclonal CD4(+) T cells have revealed several mechanisms of self-tolerance; however,which mechanisms operate in normal repertoires is unclear. Here we studied polyclonal CD4(+) T cells specific for green fluorescent protein expressed in various organs,which allowed us to determine the effects of specific expression patterns on the same epitope-specific T cells. Peptides presented uniformly by thymic antigen-presenting cells were tolerated by clonal deletion,whereas peptides excluded from the thymus were ignored. Peptides with limited thymic expression induced partial clonal deletion and impaired effector T cell potential but enhanced regulatory T cell potential. These mechanisms were also active for T cell populations specific for endogenously expressed self antigens. Thus,the immunotolerance of polyclonal CD4(+) T cells was maintained by distinct mechanisms,according to self-peptide expression patterns.
View Publication
Reference
Lian R-L et al. (FEB 2016)
Molecular and cellular biochemistry 413 1-2 69--85
Effects of induced pluripotent stem cells-derived conditioned medium on the proliferation and anti-apoptosis of human adipose-derived stem cells.
Human adipose-derived stem cells (hASCs) become an appealing source for regenerative medicine. However,with the multi-passage or cryopreservation for large-scale growth procedures in terms of preclinical and clinical purposes,hASCs often reveal defective cell viability,which is a major obstacle for cell therapy. In our study,the effects of induced pluripotent stem cells-derived conditioned medium (iPS-CM) on the proliferation and anti-apoptosis in hASCs were investigated. hASCs at passage 1 were identified by the analysis of typical surface antigens with flow cytometry assay and adipogenic and osteogenic differentiation. The effect of iPS-CM on the proliferation in hASCs was analyzed by cell cycle assay and Ki67/P27 quantitative polymerase chain reaction analysis. The effect of iPS-CM on the anti-apoptosis of hASCs irradiated by 468 J/m(2) of ultraviolet C was investigated by annexin v/propidium iodide analysis,mitochondrial membrane potential assay,intracellular reactive oxygen species assay,Western blotting and caspase activity assays. The effect of iPS-CM on the surface antigen expressions of hASCs was analyzed using flow cytometry assay. The levels of Activin A and bFGF in culture supernatant of hASCs with different treatments were also detected by enzyme-linked immunosorbent assay. iPS-CM promoted proliferation and inhibited apoptosis of hASCs. This discovery demonstrates that iPS-CM might be used as one of the available means to overcome the propagation obstacle for hASCs and make for large-scale growth procedures in terms of preclinical and clinical purposes.
View Publication
Reference
Konishi S et al. (DEC 2015)
Stem Cell Reports 6 1 6--13
Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells.
Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However,the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1(+)-ventralized anterior foregut endoderm cells (VAFECs),we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM(+) VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore,the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT,a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a 9 + 2" microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine."
View Publication
Reference
Verheyen A et al. (DEC 2015)
PLoS ONE 10 12 e0146127
Using human iPSC-derived neurons to model TAU aggregation
Alzheimer's disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening,we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons,seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks,without affecting general cell health. To validate our model,activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model,highly suitable to screen for compounds that modulate TAU aggregation.
View Publication
Reference
Sriram G et al. (DEC 2015)
Stem cell research & therapy 6 1 261
Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder- and serum-free conditions.
BACKGROUND Heterogeneity of endothelial cells (ECs) is a hallmark of the vascular system which may impact the development and management of vascular disorders. Despite the tremendous progress in differentiation of human embryonic stem cells (hESCs) towards endothelial lineage,differentiation into arterial and venous endothelial phenotypes remains elusive. Additionally,current differentiation strategies are hampered by inefficiency,lack of reproducibility,and use of animal-derived products. METHODS To direct the differentiation of hESCs to endothelial subtypes,H1- and H9-hESCs were seeded on human plasma fibronectin and differentiated under chemically defined conditions by sequential modulation of glycogen synthase kinase-3 (GSK-3),basic fibroblast growth factor (bFGF),bone morphogenetic protein 4 (BMP4) and vascular endothelial growth factor (VEGF) signaling pathways for 5 days. Following the initial differentiation,the endothelial progenitor cells (CD34(+)CD31(+) cells) were sorted and terminally differentiated under serum-free conditions to arterial and venous ECs. The transcriptome and secretome profiles of the two distinct populations of hESC-derived arterial and venous ECs were characterized. Furthermore,the safety and functionality of these cells upon in vivo transplantation were characterized. RESULTS Sequential modulation of hESCs with GSK-3 inhibitor,bFGF,BMP4 and VEGF resulted in stages reminiscent of primitive streak,early mesoderm/lateral plate mesoderm,and endothelial progenitors under feeder- and serum-free conditions. Furthermore,these endothelial progenitors demonstrated differentiation potential to almost pure populations of arterial and venous endothelial phenotypes under serum-free conditions. Specifically,the endothelial progenitors differentiated to venous ECs in the absence of VEGF,and to arterial phenotype under low concentrations of VEGF. Additionally,these hESC-derived arterial and venous ECs showed distinct molecular and functional profiles in vitro. Furthermore,these hESC-derived arterial and venous ECs were nontumorigenic and were functional in terms of forming perfused microvascular channels upon subcutaneous implantation in the mouse. CONCLUSIONS We report a simple,rapid,and efficient protocol for directed differentiation of hESCs into endothelial progenitor cells capable of differentiation to arterial and venous ECs under feeder-free and serum-free conditions. This could offer a human platform to study arterial-venous specification for various applications related to drug discovery,disease modeling and regenerative medicine in the future.
View Publication
Reference
Han S et al. (JAN 2016)
Biochemical and biophysical research communications 469 4 1153--1158
Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway.
In spite of the recent improvements,the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer,a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here,we report on a component of a traditional Chinese medicine,evodiamine,which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase,it did not hold CSLC in a specific cell cycle phase but instead,selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly,evodiamine selectively activated p53 and p21 and decreased inactive Rb,the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer.
View Publication