Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors.
Outgrowth,long-term self-renewal,and terminal maturation of human erythroid progenitors derived from umbilical cord blood in serum-free medium can be modulated by steroid hormones. Homogeneous erythroid cultures,as characterized by flow cytometry and dependence on a specific mixture of physiologic proliferation factors,were obtained within 8 days from a starting population of mature and immature mononuclear cells. Due to previous results in mouse and chicken erythroblasts,the proliferation-promoting effect of glucocorticoids was not unexpected. Surprisingly,however,androgen had a positive effect on the sustained expansion of human female but not male erythroid progenitors. Under optimal conditions,sustained proliferation of erythroid progenitors resulted in a more than 10(9)-fold expansion within 60 days. Terminal erythroid maturation was significantly improved by adding human serum and thyroid hormone (3,5,3'-triiodothyronine [T3]) to the differentiation medium. This resulted in highly synchronous differentiation of the cells toward enucleated erythrocytes within 6 days,accompanied by massive size decrease and hemoglobin accumulation to levels comparable to those in peripheral blood erythrocytes. Thus,obviously,different ligand-activated nuclear hormone receptors massively influence the decision between self-renewal and terminal maturation in the human erythroid compartment.
View Publication
Lemieux ME et al. (AUG 1997)
Experimental hematology 25 9 951--7
Differential ability of flt3-ligand, interleukin-11, and Steel factor to support the generation of B cell progenitors and myeloid cells from primitive murine fetal liver cells.
A variety of factors produced by stromal fibroblasts,including Flt3-ligand (FL),interleukin-11 (IL-11),Steel factor (SF),and IL-7,have been implicated in stimulating the production of pre-B cells and myeloid cells from primitive hematopoietic precursors. To investigate their relative roles in this process,either as single-acting or synergistic agents,we compared the yield and types of cells produced after 2 weeks from small numbers of Sca-1+ Lin- (i.e.,B220-,Ly-1-,Gr-1-,and Ter-119-) day 14.5 murine fetal liver cells placed in stromal cell-free cultures containing all possible combinations of FL,SF,IL-7,and IL-11. None of these factors alone supported the production (or survival) of any cells beyond 1 week: only pairs of factors consisting of either FL or SF plus either IL-11 or IL-7 were effective in this regard,with FL plus IL-11 being the most potent pair (approximately 7 x 10(4) cells obtained per 100 Sca-1+ Lin- input cells). The maximum numbers of cells were produced in the presence of FL,IL-11,and IL-7: these included both B220+ and Mac-1+/Gr-1+ cells (approximately 10(6) and approximately 2 x 10(5),respectively,per 100 Sca-1+ Lin- input cells). Both of these lineages were also obtained with each of the other possible three-factor combinations,albeit with variable effectiveness. Omission of either FL or IL-7 caused the greatest reduction in the yield of B220+ cells (approximately 130-fold and approximately 80-fold,respectively). Omission of IL-11 and,to a lesser extent,FL caused the greatest reduction in the yield of Mac-1+/Gr-1+ cells (approximately 90-fold and approximately 3-fold,respectively). When fetal calf serum was replaced with a defined serum substitute,the out put of B220+ cells remained the same but myelopoiesis was consistently enhanced (approximately 5- to 20-fold). These findings support a model involving factor redundancy in the extracellular signals required to stimulate the production and amplification of both lymphoid and myeloid cells from early Sca-1+ Lin- cells. They also reveal quantitative differences in the abilities of different competent factor combinations to promote this process,which may be further modulated by the presence of undefined serum components.
View Publication
Dedhia PH et al. (AUG 2010)
Blood 116 8 1321--8
Differential ability of Tribbles family members to promote degradation of C/EBPalpha and induce acute myelogenous leukemia.
Trib1,Trib2,and Trib3 are mammalian homologs of Tribbles,an evolutionarily conserved Drosophila protein family that mediates protein degradation. Tribbles proteins function as adapters to recruit E3 ubiquitin ligases and enhance ubiquitylation of the target protein to promote its degradation. Increased Trib1 and Trib2 mRNA expression occurs in human myeloid leukemia and induces acute myeloid leukemia in mice,whereas Trib3 has not been associated with leukemia. Given the high degree of structural conservation among Tribbles family members,we directly compared the 3 mammalian Tribbles in hematopoietic cells by reconstituting mice with hematopoietic stem cells retrovirally expressing these proteins. All mice receiving Trib1 or Trib2 transduced hematopoietic stem cells developed acute myeloid leukemia,whereas Trib3 mice did not. Our previous data indicated that Trib2-mediated degradation of the transcription factor,CCAAT/enhancer-binding protein-alpha (C/EBPalpha),is important for leukemogenesis. Similar to Trib2,Trib1 induced C/EBPalpha degradation and inhibited its function. In contrast,Trib3 failed to inactivate or promote efficient degradation of C/EBPalpha. These data reveal that the 3 Tribbles homologs differ in their ability to promote degradation of C/EBPalpha,which account for their differential ability to induce leukemia.
View Publication
Pineault N et al. (MAR 2004)
Molecular and cellular biology 24 5 1907--17
Differential and common leukemogenic potentials of multiple NUP98-Hox fusion proteins alone or with Meis1.
NUP98-Hox fusion genes are newly identified oncogenes isolated in myeloid leukemias. Intriguingly,only Abd-B Hox genes have been reported as fusion partners,indicating that they may have unique overlapping leukemogenic properties. To address this hypothesis,we engineered novel NUP98 fusions with Hox genes not previously identified as fusion partners: the Abd-B-like gene HOXA10 and two Antennepedia-like genes,HOXB3 and HOXB4. Notably,NUP98-HOXA10 and NUP98-HOXB3 but not NUP98-HOXB4 induced leukemia in a murine transplant model,which is consistent with the reported leukemogenic potential ability of HOXA10 and HOXB3 but not HOXB4. Thus,the ability of Hox genes to induce leukemia as NUP98 fusion partners,although apparently redundant for Abd-B-like activity,is not restricted to this group,but rather is determined by the intrinsic leukemogenic potential of the Hox partner. We also show that the potent leukemogenic activity of Abd-B-like Hox genes is correlated with their strong ability to block hematopoietic differentiation. Conversely,coexpression of the Hox cofactor Meis1 alleviated the requirement of a strong intrinsic Hox-transforming potential to induce leukemia. Our results support a model in which many if not all Hox genes can be leukemogenic and point to striking functional overlap not previously appreciated,presumably reflecting common regulated pathways.
View Publication
K. T. Chow et al. (NOV 2018)
Journal of immunology (Baltimore,Md. : 1950) 201 10 3036--3050
Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells.
We examined the signaling pathways and cell type-specific responses of IFN regulatory factor (IRF) 5,an immune-regulatory transcription factor. We show that the protein kinases IKK$\alpha$,IKK$\beta$,IKK$\epsilon$,and TANK-binding kinase 1 each confer IRF5 phosphorylation/dimerization,thus extending the family of IRF5 activator kinases. Among primary human immune cell subsets,we found that IRF5 is most abundant in plasmacytoid dendritic cells (pDCs). Flow cytometric cell imaging revealed that IRF5 is specifically activated by endosomal TLR signaling. Comparative analyses revealed that IRF3 is activated in pDCs uniquely through RIG-I-like receptor (RLR) signaling. Transcriptomic analyses of pDCs show that the partitioning of TLR7/IRF5 and RLR/IRF3 pathways confers differential gene expression and immune cytokine production in pDCs,linking IRF5 with immune regulatory and proinflammatory gene expression. Thus,TLR7/IRF5 and RLR-IRF3 partitioning serves to polarize pDC response outcome. Strategies to differentially engage IRF signaling pathways should be considered in the design of immunotherapeutic approaches to modulate or polarize the immune response for specific outcome.
View Publication
Mathers AR et al. (JAN 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 2 921--33
Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses.
Human skin-migratory dendritic cells (DCs) have the ability to prime and bias Th1 and Th2 CD4+ T lymphocytes. However,whether human cutaneous DCs are capable of initiating proinflammatory Th17 responses remains undetermined. We report that skin-migratory DCs stimulate allogeneic naive CD4+ T cells that differentiate simultaneously into two distinct effector Th17 and Th1 populations capable of homing to the skin,where they induce severe cutaneous damage. Skin-migratory Langerhans cells (smiLCs) were the main cutaneous DC subset capable of inducing Th17 responses dependent on the combined effects of IL-15 and stabilized IL-6,which resulted in IL-6 trans-signaling of naive CD4+ T cells. Different from smiLCs,purified skin-migratory dermal DCs did not synthesize IL-15 and were unable to bias Th17 responses. Nevertheless,these dermal DCs were capable of differentiating Th17 cells in mixed leukocyte cultures supplemented with IL-15 and stabilized IL-6. Overall,our data demonstrate that human epidermal smiLCs induce Th17 responses by mechanisms different from those previously described and highlight the need to target clinical treatments based on these variations.
View Publication
Petzer AL et al. (JUN 1996)
The Journal of experimental medicine 183 6 2551--8
Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin.
A high proportion of the CD34+CD38- cells in normal human marrow are defined as long-term culture-initiating cells (LTC-IC) because they can proliferate and differentiate when co-cultured with cytokine-producing stromal feeder layers. In contrast,very few CD34+CD38- cells will divide in cytokine-containing methylcellulose and thus are not classifiable as direct colony-forming cells (CFC),although most can proliferate in serum-free liquid cultures containing certain soluble cytokines. Analysis of the effects of 16 cytokines on CD34+CD38- cells in the latter type of culture showed that Flt3-ligand (FL),Steel factor (SF),and interleukin (IL)-3 were both necessary and sufficient to obtain an approximately 30-fold amplification of the input LTC-IC population within 10 d. As single factors,only FL and thrombopoietin (TPO) stimulated a net increase in LTC-IC within 10 d. Interestingly,a significantly increased proportion of the CFC produced from the TPO-amplified LTC-IC were erythroid. Increases in the number of directly detectable CFC of textgreater 500-fold were also obtainable within 10 d in serum-free cultures of CD34+CD38- cells. However,this required the presence of IL-6 and/or granulocyte/colony-stimulating factor and/or nerve growth factor beta in addition to FL,SF,and IL-3. Also,for this response,the most potent single-acting factor tested was IL-3,not FL. Identification of cytokine combinations that differentially stimulate primitive human hematopoietic cell self-renewal and lineage determination should facilitate analysis of the intracellular pathways that regulate these decisions as well as the development of improved ex vivo expansion and gene transfer protocols.
View Publication
O'Mahony L et al. (APR 2006)
American journal of physiology. Gastrointestinal and liver physiology 290 4 G839--45
Differential cytokine response from dendritic cells to commensal and pathogenic bacteria in different lymphoid compartments in humans.
Resident host microflora condition and prime the immune system. However,systemic and mucosal immune responses to bacteria may be divergent. Our aim was to compare,in vitro,cytokine production by human mononuclear and dendritic cells (DCs) from mesenteric lymph nodes (MLNs) and peripheral blood mononuclear cells (PBMCs) to defined microbial stimuli. Mononuclear cells and DCs isolated from the MLN (n = 10) and peripheral blood (n = 12) of patients with active colitis were incubated in vitro with the probiotic bacteria Lactobacillus salivarius UCC118 or Bifidobacterium infantis 35624 or the pathogenic organism Salmonella typhimurium UK1. Interleukin (IL)-12,tumor necrosis factor (TNF)-alpha,transforming growth factor (TGF)-beta,and IL-10 cytokine levels were quantified by ELISA. PBMCs and PBMC-derived DCs secreted TNF-alpha in response to the Lactobacillus,Bifidobacteria,and Salmonella strains,whereas MLN cells and MLN-derived DCs secreted TNF-alpha only in response to Salmonella challenge. Cells from the systemic compartment secreted IL-12 after coincubation with Salmonella or Lactobacilli,whereas MLN-derived cells produced IL-12 only in response to Salmonella. PBMCs secreted IL-10 in response to the Bifidobacterium strain but not in response to the Lactobacillus or Salmonella strain. However,MLN cells secreted IL-10 in response to Bifidobacteria and Lactobacilli but not in response to Salmonella. In conclusion,commensal bacteria induced regulatory cytokine production by MLN cells,whereas pathogenic bacteria induce T cell helper 1-polarizing cytokines. Commensal-pathogen divergence in cytokine responses is more marked in cells isolated from the mucosal immune system compared with PBMCs.
View Publication
Poulsen C et al. (AUG 2015)
Toxicology letters 237 1 21--9
Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.
Long-chain bases are present in the oral cavity. Previously we determined that sphingosine,dihydrosphingosine,and phytosphingosine have potent antimicrobial activity against oral pathogens. Here,we determined the cytotoxicities of long-chain bases for oral cells,an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this,human oral gingival epithelial (GE) keratinocytes,oral gingival fibroblasts (GF),and dendritic cells (DC) were exposed to 10.0-640.0 μM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin),membrane permeability (uptake of propidium iodide or SYTOX-Green),release of cellular contents (LDH),and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC,which were more susceptible. For DC,0.2-10.0 μM long-chain bases and GML were not cytotoxic; 40.0-80.0 μM long-chain bases,but not GML,were cytotoxic; and 80.0 μM long-chain bases induced cellular damage and death in less than 20 min. The LD50 of long-chain bases for GE keratinocytes,GF,and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens,a finding important to pursuing their future potential in treating periodontal and oral infections.
View Publication
M. Barbalinardo et al. (Apr 2025)
Cancers 17 9
Differential Cytotoxicity of Surface-Functionalized Silver Nanoparticles in Colorectal Cancer and Ex-Vivo Healthy Colonocyte Models
This study investigates the use of silver nanoparticles as a potential new treatment for colorectal cancer. Colorectal cancer is one of the most common cancers worldwide,and finding more effective treatments is essential. The researchers tested silver nanoparticles AgNPs with two different surface coatings to see how they affect cancer cells compared to healthy cells. One type of nanoparticles showed significant effects,reducing cancer cell growth and inducing cell death,while the other had minimal impact. These findings suggest that modifying the surface of nanoparticles could help target cancer cells more specifically,leading to treatments that are both more effective and have fewer side effects. This research could pave the way for new therapies for colorectal cancer and other types of cancer,ultimately improving patient outcomes and advancing cancer treatment strategies.
View Publication
A. Starr et al. (Oct 2025)
Journal of Neuroimmune Pharmacology 20 1
Differential Effects of Cannabinoid Receptor 2 Agonists on HIV Replication and Inflammatory Activation in Monocyte-Derived Macrophages and Induced Pluripotent Stem Cell-Derived Microglia
Emerging evidence suggests brain-resident myeloid cells,including perivascular macrophages and microglia,provide a reservoir for HIV infection in the central nervous system (CNS),and their inflammatory activation is a proposed pathogenic mechanism in HIV-associated neurocognitive disorders (HAND). We investigated whether cannabinoid receptor 2 (CB2),an immunomodulatory receptor expressed in myeloid cells,regulates viral replication and inflammation in HIV-infected macrophages and microglia. Using the synthetic CB2-specific agonist JWH-133,we found that CB2 activation reduced HIV replication in primary human monocyte-derived macrophages (MDMs) and human induced pluripotent stem cell-derived microglia (iMg) at differing doses,corresponding to the basal expression of CNR2,which encodes CB2,and related endocannabinoid transcripts in each cell type. JWH-133 broadly reduced release of cytokines from HIV-infected MDMs but not iMg. RNA-seq revealed that CB2 agonism primarily altered interferon and integrated stress response pathways in MDMs while altering homeostatic pathways,including synapse maintenance and phagocytosis,in iMg. Further analyses in iMg revealed that NLRP3 inflammasome activation,but not priming,was reduced by CB2 activation,which did not inhibit HIV-induced nuclear factor kB activation. This study identifies key differences in CB2 response between myeloid lineage cell types and implicates CB2-specific agonists as promising candidates for the regulation of HIV-associated neuroinflammation.Graphical AbstractCreated in BioRender. Espinoza,C. (2025) https://BioRender.com/mxfla3i
Supplementary InformationThe online version contains supplementary material available at 10.1007/s11481-025-10254-x.
View Publication
White L et al. (MAY 2007)
Blood 109 9 3873--80
Differential effects of IL-21 and IL-15 on perforin expression, lysosomal degranulation, and proliferation in CD8 T cells of patients with human immunodeficiency virus-1 (HIV).
An urgent need exists to devise strategies to augment antiviral immune responses in patients with HIV who are virologically well controlled and immunologically stable on highly active antiretroviral therapy (HAART). The objective of this study was to compare the immunomodulatory effects of the cytokines interleukin (IL)-21 with IL-15 on CD8 T cells in patients with HIV RNA of less than 50 copies/mL and CD4 counts greater than 200 cells/mm.(3) Patient CD8 T cells displayed skewed maturation and decreased perforin expression compared with healthy controls. Culture of freshly isolated patient peripheral-blood mononuclear cells (PBMCs) for 5 hours to 5 days with IL-21 resulted in up-regulation of perforin in CD8 T cells,including memory and effector subsets and virus-specific T cells. IL-21 did not induce T-cell activation or proliferation,nor did it augment T-cell receptor (TCR)-induced degranulation. Treatment of patient PBMCs with IL-15 resulted in induction of perforin in association with lymphocyte proliferation and augmentation of TCR-induced degranulation. Patient CD8 T cells were more responsive to cytokine effects than the cells of healthy volunteers. We conclude that CD8 T cells of patients with HIV can be modulated by IL-21 to increase perforin expression without undergoing overt cellular activation. IL-21 could potentially be useful for its perforin-enhancing properties in anti-HIV immunotherapy.
View Publication